Last updated at Dec. 16, 2024 by Teachoo
Ex9.2 ,7 (Method 1) Find the sum to n terms of the A.P., whose kth term is 5k + 1. It is given that kth term = 5k + 1 ak = 5k + 1. Putting k = 1 a1 = 5 × 1 + 1 = 5 + 1 = 6 Similarly, Putting k = 2 a2 = 5 × 2 + 1 = 10 + 1 = 11 Putting k = 3 a3 = 5 × 3 + 1 = 15 + 1 = 16 Thus, our A.P. becomes 6 , 11 , 16 , …… Here, First term = a = 6 d = common difference = 11 – 6 = 5 We need to find sum of n term i.e. Sn Sn = n/2 [2a + (n – 1)d] putting values a = 6 , d = 5 Sn = n/2 [2 × 6 + (n – 1)5] = n/2 [12 + (n – 1)5] = n/2 [12 + 5n – 5] = n/2 [5n + 7] Hence, the sum of n terms of the A.P. is n/2 [5n + 7] Ex9.2 ,7 (Method 2) Find the sum to n terms of the A.P., whose kth term is 5k + 1. It is given that kth term = 5k + 1 ak = 5k + 1 To find sum of n terms, we use the formula Sn = n/2 [a + l] where Sn = sum of n terms of AP n = number of terms a = first term of A.P l = last term of A.P. Last term of this sequence will be an Finding first term i.e. a , Putting k = 1 in (1) a1 = 5 × 1 + 1 = 5 + 1 = 6 Finding last term , i.e. an Putting k = n in (1) an = 5n + 1 i.e. l = 5n + 1 Now, Sn = 𝑛/2[a + l] putting values a = 6 , l = 5n + 1 = 𝑛/2[6 + (5n + 1)] = 𝑛/2[6 + 5n + 1] = 𝑛/2[5n + 7] Hence, the sum of n terms of the A.P. is n/2 [5n + 7]
Arithmetic Progression
Question 2
Question 3 Important
Question 4
Question 5 Important
Question 6
Question 7 Important You are here
Question 8
Question 9 Important
Question 10
Question 11 Important
Question 12
Question 13
Question 14 Important
Question 15 Important
Question 16 Important
Question 17
Question 18 Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo