Question 13 - Examples - Chapter 7 Class 11 Binomial Theorem
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Question 13 If the coefficients of (r – 5)th and (2r – 1)th terms in the expansion of (1 + x)34 are equal, find r. We Know that General term of expansion (a + b)n is Tr + 1 = nCr an–r br General term for (1 + x)34 Putting a = 1, b = x, n = 34 Tr + 1 = 34Cr 1n – r xr Tr + 1 = 34Cr xr Coefficient of (r – 5)th term i.e. Tr – 5 i.e. Tr – 6 + 1 Putting r = r – 6 in (1) T(r– 6 +1) = 34Cr–6 (x)r – 6 Tr – 5 = 34Cr – 6 . xr – 6 ∴ Coefficient of (r – 5)th term = 34Cr – 6 Coefficient of (2r – 1)th term i.e. T2r – 1 term i.e. T2r – 2 + 1 term Putting r = 2r – 2 in (1) T(2r – 2 +1) = 34C2r – 2 (x)2r – 2 T2r – 1 = 34C2r – 2 . x2r – 2 ∴ Coefficient of (2r – 1)th term = 34C2r – 2 Given that Coefficient of (r – 5)th & (2r – 1)th term are equal i.e. 34Cr – 6 = 34C2r – 2 We know that if nCr = nCp , then r = p or r = n – p So, r – 6 = 2r – 2 or r – 6 = 34 – (2r – 2) r – 6 = 2r – 2 –6 + 2 = 2r – r –4 = r r = –4 r – 6 = 34 – (2r – 2) r – 6 = 34 – 2r + 2 r + 2r = 34 + 2 + 6 3r = 42 r = 42/3 = 14 Since r is a natural number So r = – 4 not possible Hence, r = 14
Examples
Example 2 Important
Example 3 Important
Example 4
Question 1 Important
Question 2 Important
Question 3
Question 4 Important
Question 5
Question 6 Important
Question 7 Important
Question 8
Question 9 Important
Question 10 Important
Question 11 Important
Question 12
Question 13 Important You are here
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo