Question 7 - Examples - Chapter 7 Class 11 Binomial Theorem
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Question 7 If the coefficients of ar – 1, ar and ar + 1 in the expansion of (1 + a)n are in arithmetic progression, prove that n2 – n(4r + 1) + 4r2 – 2 = 0. We know that General term of (a + b)n Tr+1 = nCr an–r . br For (1 + a)n Putting a = 1 & b = a Tr + 1 = nCr (1)n – r . ar Tr + 1 = nCr ar Hence, Coefficient of ar = nCr Finding coefficient of ar – 1 Putting r = r – 1 in (1) T(r – 1) + 1 = nCr – 1 ar – 1 Tr = nCr – 1 ar – 1 ∴ Coefficient of ar – 1 = nCr – 1 For coefficient of ar + 1 Putting r = r + 1 in (1) T(r+1) + 1 = nCr + 1 ar + 1 Tr + 2 = nCr+1 ar + 1 ∴ Coefficient of ar + 1 = nCr + 1 Given that coefficient of ar–1 , ar , ar+1 are in AP i.e. nCr–1 , nCr , & nCr + 1 are in AP Therefore, common difference must be equal nCr – nCr – 1 = nCr+1 – nCr nCr + nCr = nCr+1 + nCr–1 2nCr = nCr+1 + nCr–1 nCr–1 + nCr+1 = 2nCr 𝑛!/(𝑟 − 1)![ 𝑛 − (𝑟 − 1)]! + 𝑛!/((𝑟 + 1)! (𝑛 − (𝑟 + 1))!) = 2 × 𝑛!/𝑟!(𝑛 − 𝑟)! n! (1/(𝑟−1)!(𝑛−𝑟+1)! " + " 1/((𝑟+1)!(𝑛−𝑟 −1)!)) = n! (2/𝑟!(𝑛 − 𝑟)!) 𝑛!/𝑛! (1/(𝑟−1)!(𝑛−𝑟+1)! " + " 1/((𝑟+1)!(𝑛−𝑟 −1)!)) = (2/𝑟!(𝑛−𝑟)!) 1/((r − 1)! (n − r + 1)(n − r)(n − r − 1)!) + 1/((r + 1)(r)(r − 1)! (n − r − 1)!) = 2/(r(r − 1)! (n − r)(n − r − 1)!) 1/(𝑟 − 1)!(𝑛 − 𝑟 − 1)! (1/((𝑛 − 𝑟 + 1)(𝑛 − 𝑟) ) "+" 1/((𝑟 + 1)(𝑟) )) = 2/((r − 1)! (n − r − 1) ! [𝑟(n − r)]) (𝑟−1)!(𝑛−𝑟+1)!/(𝑟−1)!(𝑛−𝑟+1)! (1/((𝑛 − 𝑟 + 1)(𝑛 − 𝑟) ) "+" 1/((𝑟 + 1)(𝑟) )) = 2/𝑟(n − r) 1/((𝑛 − 𝑟) (𝑛 − 𝑟 − 1) ) + 1/((𝑟 + 1) 𝑟) = 2/(𝑟 (𝑛 − 𝑟) ) ((𝑟 + 1)𝑟 + (𝑛 − 𝑟)(𝑛 − 𝑟 + 1))/( (𝑛 − 𝑟)(𝑛 − 𝑟 + 1) (𝑟 + 1)𝑟) = 2/( 𝑟(𝑛 − 𝑟) ) (r + 1) r + (n – r) (n – r + 1) = (2(n − r)(n − r + 1)(r + 1)(𝑟))/( 𝑟(n − r) ) (r + 1) r + (n – r) (n – r + 1)= 2(n – r + 1) (r + 1) r2 + r + n (n – r + 1) – r (n – r + 1) = 2 [r (n – r + 1) + 1(n – r + 1 )] r2 + r + n2 – nr + n – nr + r2 – r = 2(rn – r2 + r + n – r + 1) r2 + r2 + r – r + n2 – nr – nr + n = 2rn – 2r2 + 2r + 2n – 2r + 2 2r2 + 0 + n2 – 2nr + n = – 2r2 + 2r – 2r + 2rn + 2n + 2 2r2 + n2 – 2nr + n = – 2r2 + 2rn + 2n + 2 2r2 + n2 – 2nr + n + 2r2 – 2rn – 2n – 2 = 0 2r2 + 2r2 + n2 – 2nr – 2rn + n – 2n – 2 = 0 4r2 + n2 – 4nr – n – 2 = 0 n2 – 4nr – n + 4r2 – 2 = 0 n2 – n (4r + 1) + 4r2 – 2 = 0 Hence proved
Examples
Example 2 Important
Example 3 Important
Example 4
Question 1 Important
Question 2 Important
Question 3
Question 4 Important
Question 5
Question 6 Important
Question 7 Important You are here
Question 8
Question 9 Important
Question 10 Important
Question 11 Important
Question 12
Question 13 Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo