Question 2 - Examples - Chapter 7 Class 11 Binomial Theorem
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Question 2 Show that the middle term in the expansion of (1 + x)2n is (1 . 3 . 5 โฆ. (2๐ โ 1))/๐! 2n xn, where n is a positive integer. Given Number of terms = 2n which is even So, Middle term = (2n/2 + 1)th term = (n + 1)th term Hence, we need to find Tn + 1 We know that general term of (a + b)nis Tr + 1 = nCr an โ r br For Tn + 1 , Putting n = 2n , r = n , a = 1 & b = x Tn+1 = 2nCn (1)2n โ n (x)n = (2๐)!/๐!(2๐ โ๐)! . (1)n . xn = (2๐)!/(๐! ๐!) . xn = (2๐(2๐ โ 1)(2๐ โ 2) โฆโฆ. 4 ร 3 ร 2 ร 1)/(๐! ๐!) xn = ([(2๐ โ 1)(2๐ โ 3)โฆ.โฆ. ร 5 ร 3 ร 1] [(2๐)(2๐ โ 2)โฆ ร 4 ร 2])/(๐! ๐!) xn We need to show (1 . 3 . 5 โฆ. (2๐ โ 1))/๐! 2n xn = ([1 ร 3 ร 5 ร โฆโฆ ร (2๐ โ 3)(2๐ โ 1)] [2 ร 4 ร 6โฆ.. ร (2๐ โ 2) ร 2๐])/(๐! ๐!) xn = ([1 ร 3 ร 5โฆโฆ. ร (2๐โ3)(2๐โ1)] [(2 ร 1) ร(2 ร 2) ร(2 ร 3) ร โฆ.. ร 2 (๐โ1) ร 2(๐)])/(๐! ๐!) xn = ([1 ร 3 ร 5โฆโฆ. ร (2๐โ3)(2๐โ1)] (2 ร 2 ร 2 ร 2 โฆโฆ..ร 2) [1 ร 2 ร 3 โฆ.. (๐โ1) ๐])/(๐! ๐!) xn = ([1 ร 3 ร 5โฆโฆ. ร (2๐ โ 3)(2๐ โ 1)] 2๐ [1 ร 2 ร 3 โฆ.. (๐ โ 1) ๐])/๐!๐! xn = ([1 ร 3 ร 5โฆโฆ. ร (2n โ 3)(2n โ 1)] 2n (n!))/(n! n!) . xn = (๐ ร ๐ ร ๐โฆโฆ. ร (๐๐ง โ ๐))/(๐ง! ) 2n . xn Hence middle term of expansion (1 + x)2n is (1 . 3 . 5โฆโฆ. โฆ.(2nโ1))/(n! ) 2n . xn Hence proved
Examples
Example 2 Important
Example 3 Important
Example 4
Question 1 Important
Question 2 Important You are here
Question 3
Question 4 Important
Question 5
Question 6 Important
Question 7 Important
Question 8
Question 9 Important
Question 10 Important
Question 11 Important
Question 12
Question 13 Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo