Last updated at Dec. 16, 2024 by Teachoo
Example, 15 Find real θ such that (3 + 2i sinθ)/(1 − 2isin θ) is purely real Since (3 + 2i sinθ)/(1 − 2isin θ) is purely real We need to first solve (3 + 2i sinθ)/(1 − 2isin θ) and then take imaginary part as 0 (3 + 2i sinθ)/(1 − 2isin θ) Rationalizing = (3 + 2i sinθ)/(1 − 2isin θ) × (1 + 2isin θ)/(1 + 2isin θ) = ((3 + 2i sinθ ) ( 1 + 2i sinθ) )/(1 − 2i sin θ)(1 + 2i sin θ) = (3(1 + 2i sin〖θ) + 2𝑖 sinθ (1 + 2i sin θ") " 〗)/( 1 − 2i sin θ)(1 + 2i sin θ) = (3 + 6i sin〖θ + 2𝑖 sinθ + (2i sin θ)2" " 〗)/(1 − 2i sin θ)(1+ 2i sin θ) = (3 + 8i sin〖θ + 4i2 sin2 θ" " 〗)/(1 − 2i sin θ)(1 + 2i sin θ) Using ( a – b ) ( a + b ) = a2 – b2 = (3 + 8i sin〖θ + 4i2 sin2 θ" " 〗)/(12 −(2i sin θ)2) = (3 + 8i sin〖θ + 4i2 sin2 θ" " 〗)/(1 − 4i2 sin2 θ) Putting i2 = − 1 = (3 + 8i sin〖θ + 4(−1) sin2 θ" " 〗)/(1 − 4 (−1) sin2 θ) = (3 + 8i sin〖θ − 4 sin2 θ" " 〗)/(1 + 4 sin2 θ) = (3 + 8i sin〖θ − 4 sin2 θ" " 〗)/(1 + 4 sin2 θ) = (3 − 4 sin2 θ + 8i sin〖θ 〗)/(1 + 4 sin2 θ) = (3 − 4 sin2 θ )/(1 + 4 sin2 θ) + 𝑖 ( 8 sin〖θ 〗)/(1 + 4 sin2 θ) Hence, (3 + 2i sinθ)/(1 − 2isin θ) = (3 − 4 sin2 θ )/(1 + 4 sin2 θ) + 𝑖 ( 8 sin〖θ 〗)/(1 + 4 sin2 θ) Since (3 + 2i sinθ)/(1 − 2isin θ) is purely real given Hence imaginary part of is equal to 0 i.e. ( 8 sin〖θ 〗)/(1 + 4 sin2 θ) = 0 8 sinθ= 0 ×(1 + 4 sin2θ ) 8 sin θ = 0 sin θ = 0/8 sinθ = 0 sinθ = sin 0 Since sin θ = sin𝑦 Then θ = n𝜋 ± y , where n ∈ Z Putting y = 0 θ = n𝜋 ± 0 θ = n𝜋 where n ∈ Z Hence for θ = n𝜋 ,where n ∈ Z (3 + 2𝑖 sin𝜃)/(1 − 2𝑖 sin 𝜃) is purely real
Examples
Example 2 (i)
Example 2 (ii) Important
Example 3
Example 4
Example 5 Important
Example 6 (i)
Example 6 (ii) Important
Example 7
Example 8 Important
Question 1
Question 2 Important
Question 3
Question 4
Question 5 Important
Question 6 (i) Important
Question 6 (ii)
Question 7 You are here
Question 8 Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo