Check sibling questions

ย 

ย 

ย 


Transcript

Example, 13 Find the modulus and argument of the complex numbers: (i) (1 + ๐‘–)/(1 โˆ’ ๐‘–) , First we solve (1 + ๐‘–)/(1 โˆ’ ๐‘–) Let ๐‘ง = (1 + ๐‘–)/(1 โˆ’ ๐‘–) Rationalizing the same = (1 + ๐‘–)/(1 โˆ’ ๐‘–) ร— (1 + ๐‘–)/(1 + ๐‘–) = (( 1 + ๐‘– ) ( 1 + ๐‘– ))/("(" 1 โˆ’ ๐‘– ) (1 + ๐‘– )) Using (a โ€“ b) (a + b) = a2 โˆ’ b2 = ( 1+ ๐‘– )2/( ( 1 )2 โˆ’ ( ๐‘– )2) Using ( a + b )2 = a2 + b2 + 2ab = ((1)2 + (๐‘–)2 + 2๐‘–)/( (1)2 โˆ’ (๐‘–)2) Putting i2 = โˆ’ 1 = ((1)2 + (โˆ’1) + 2๐‘–)/( 1โˆ’ (โˆ’ 1) ) = (1 โˆ’1 + 2๐‘–)/( 1 + 1) = ( 2๐‘–)/( 2) = ๐‘– = 0 + ๐‘– Hence, ๐‘ง = 0 + ๐‘– Method 1 To calculate modulus of z z = 0 + i Complex number z is of the form x + ๐‘–y Hence x = 0 and y = 1 Modulus of z = โˆš(๐‘ฅ^2+๐‘ฆ2) = โˆš(( 0 )2+(1)2) = โˆš(0+1) = โˆš1 = 1 Modulus of z = 1 Method 2 To calculate modulus of z We have , z = 0 + ๐‘– Let z = r ( cos ฮธ + ๐‘– sin ฮธ ) Here r is modulus, and ฮธ is argument From (1) and (2) 0 + ๐‘– = r ( cos ฮธ + ๐‘– sin ฮธ ) 0 + ๐‘– = r cos ฮธ + ๐‘–r sin ฮธ Comparing real part 0 = r cos ฮธ Squaring both sides (0)2 = ( ๐‘Ÿ cosโกฮธ )2 0 = r2 cos2 ฮธ Adding (3) and (4) 0 + 1 = r2 cos2 ฮธ + r2 sin2 ฮธ 1=๐‘Ÿ2 (cos2 ฮธ+sin2 ฮธ) 1 = r2 (1) 1 = r2 1 = r โ‡’ Modulus of z = 1 Finding argument 0 + ๐‘– = r cos ฮธ + ๐‘–r sin ฮธ Comparing real part 0 = r cos ฮธ Put r = 1 0 = 1 ร— cos ฮธ 0 = cos ฮธ cos ฮธ = 0 Hence, cos ฮธ = 0 & sin ฮธ = 1 Since, sin ฮธ is positive and cos ฮธ is zero Hence, ฮธ lies in Ist quadrant So, Argument = 90ยฐ = 90 ร— ๐œ‹/180 = ๐œ‹/2 Hence, argument of z = ๐œ‹/2

  1. Chapter 4 Class 11 Complex Numbers
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo