Check sibling questions


Transcript

Example 7 Find the conjugate of ((3 − 2i)(2 + 3i))/((1 + 2i)(2 − i) ) First we calculate ((3 − 2i)(2 + 3i))/((1 + 2i)(2 − i) ) then find its conjugate ((3 −2i)(2+3i))/((1+ 2i)(2−i) ) = (3(2+3i)−2i(2+3i))/(1(2−i)+ 2i(2−i) ) = (3 × 2 +3 × 3𝑖 − 2𝑖 × 2 − 2𝑖 × 3𝑖)/(1 × 2 + 1 ×( −𝑖) + 2𝑖 × 2 − 2𝑖 × 𝑖 ) = (6 + 9i − 4i + 6𝑖2)/(2 − i + 4i − 2i2) = (6 + 5i − 6𝑖2)/(2 + 3i + 2i2) Putting i2 = −1 = (6 + 5𝑖 − 6 ( −1))/(2 + 3𝑖 −2( −1)) = (6 + 5𝑖 + 6)/(2 + 3𝑖 + 2) = (6 + 6 + 5𝑖)/(2 + 2 + 3𝑖) = (12 + 5𝑖)/(4 + 3𝑖) Rationalizing = (12 + 5𝑖)/(4 + 3𝑖) × (4 − 3𝑖)/(4 − 3𝑖) = ((12 + 5𝑖) (4 − 3𝑖))/((4 + 3𝑖) (4 − 3𝑖) ) = (12 × 4 − 12 × 3𝑖 + 5𝑖 × 4 − 5𝑖 × 3𝑖)/((4 + 3𝑖) (4 − 3𝑖)) = (48 − 36𝑖 + 20𝑖 −15𝑖2)/((4 + 3𝑖) (4 − 3𝑖)) Putting i2 = − 1 = (48 − 16𝑖 − 15 (−1))/((4 + 3𝑖) (4 − 3𝑖)) = (48 − 16𝑖 +15)/((4 + 3𝑖) (4 − 3𝑖)) = (63 − 16𝑖)/((4 + 3𝑖) (4 − 3𝑖)) Using (a – b) (a + b) = a2 – b2 = (63 − 16𝑖)/((4)2 − (3𝑖)2 ) = (63 − 16𝑖)/(16 −9𝑖2) Putting i2 = − 1 = (63 −16𝑖)/(16 + 9(−1) ) = (63 − 16𝑖)/(16 + 9) = (63 − 16𝑖)/25 Hence, ((3 −2i)(2+3i))/((1+ 2i)(2−i) ) = 63/25 − 16/25 𝑖 So conjugate of ((3 −2i)(2+3i))/((1+ 2i)(2−i) ) is 63/25 + 16/25 𝑖

  1. Chapter 4 Class 11 Complex Numbers
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo