Last updated at Dec. 13, 2024 by Teachoo
Question 6 How many silver coins, 1.75 cm in diameter and of thickness 2 mm, must be melted to form a cuboid of dimensions 5.5 cm 10 cm 3.5 cm? Number of coins = ( )/( 1 ) Volume of cuboid Length (l) = 5.5 cm Breadth (b) = 10 cm Height (h) = 3.5 cm Volume of cuboid = = 5.5 10 3.5 = 192.5 cm3 Volume of 1 coin Coin is in shape of cylinder with Diameter = 1.75 cm Radius = Diamete /2 = 1.75/2 cm= 0.875 cm = 875/1000 cm Height = 2 mm = 2 1/10 cm = 2/10 cm Volume of 1 coin = 2 = 22/7 (875/1000)^2 2/10 = 22/7 875/1000 875/1000 0.2 = 0.48125 cm3 Volume of cuboid = 𝑙𝑏ℎ = 5.5 ×10×3.5 = 192.5 cm3 Volume of 1 coin Coin is in shape of cylinder with Diameter = 1.75 cm Radius = Diamete𝑟/2 = 1.75/2 cm= 0.875 cm = 875/1000 cm Height = 2 mm = 2 × 1/10 cm = 2/10 cm Volume of 1 coin = 𝜋𝑟2ℎ = 22/7×(875/1000)^2× 2/10 = 22/7×875/1000 ×875/1000×0.2 = 0.48125 cm3 Volume of cuboid = 𝑙𝑏ℎ = 5.5 ×10×3.5 = 192.5 cm3 Volume of 1 coin Coin is in shape of cylinder with Diameter = 1.75 cm Radius = Diamete𝑟/2 = 1.75/2 cm= 0.875 cm = 875/1000 cm Height = 2 mm = 2 × 1/10 cm = 2/10 cm Volume of 1 coin = 𝜋𝑟2ℎ = 22/7×(875/1000)^2× 2/10 = 22/7×875/1000 ×875/1000×0.2 = 0.48125 cm3 Number of coins = ( )/( 1 ) = 192.5/0.48125 = 1925/4.8125 = 19250000/48125 = 400 Hence, number of coins = 400
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo