Last updated at Feb. 27, 2025 by Teachoo
Ex 11.1, 5 In a circle of radius 21 cm, an arc subtends an angle of 60Β° at the centre. Find: the length of the arc Length of Arc APB = π½/πππ Γ (ππ π) = (60Β°)/(360Β°) Γ 2 Γ 22/7 Γ 21 = 1/6 Γ 2 Γ 22 Γ 3 = 22 cm Ex 11.1, 5 In a circle of radius 21 cm, an arc subtends an angle of 60Β° at the centre. Find: (ii) area of the sector formed by the arc Area of sector OAPB = π/360Γππ2 = ππ/πππ Γ ππ/π Γ ππ Γ ππ = 1/6 Γ 22/7 Γ 21 Γ 21 = 1/6 Γ 22 Γ 3 Γ 21 = 231 cm2 Ex 11.1, 5 In a circle of radius 21 cm, an arc subtends an angle of 60Β° at the centre. Find: (iii) area of segment formed by the corresponding chord Area of segment APB = Area of sector OAPB β Area of ΞOAB From last part, Area of sector OAPB = 231 cm2 Finding area of Ξ AOB Area Ξ AOB = 1/2 Γ Base Γ Height We draw OM β₯ AB β΄ β OMB = β OMA = 90Β° And, by symmetry M is the mid-point of AB β΄ BM = AM = 1/2 AB In right triangle Ξ OMA sin O = (side opposite to angle O)/Hypotenuse sin ππΒ° = ππ΄/π¨πΆ 1/2=π΄π/21 21/2 = AM AM = ππ/π In right triangle Ξ OMA cos O = (π πππ ππππππππ‘ π‘π πππππ π)/π»π¦πππ‘πππ’π π cos ππΒ° = πΆπ΄/π¨πΆ β3/2=ππ/21 β3/2 Γ 21 = OM OM = βπ/π Γ 21 From (1) AM = π/πAB 2AM = AB AB = 2AM Putting value of AM AB = 2 Γ 1/2 Γ 21 AB = 21cm Now, Area of Ξ AOB = 1/2 Γ Base Γ Height = π/π Γ AB Γ OM = 1/2 Γ 21 Γ β3/2 Γ 21 = (πππβπ)/π cm2 Therefore, Area of segment APB = Area of sector OAPB β Area of ΞOAB = (231 β πππ/π βπ) cm2
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 15 years. He provides courses for Maths, Science and Computer Science at Teachoo