Check sibling questions


Transcript

Ex 10.2,4 Prove that the tangents drawn at the ends of a diameter of a circle are parallel. Given: A circle with center O And diameter AB Let PQ be the tangent at point A & RS be the tangent at point B To prove: PQ ∥ RS Proof: Since PQ is a tangent at point A OA ⊥ PQ ∠ OAP = 90° Similarly, RS is a tangent at point B OB ⊥ RS ∠ OBS = 90° From (1) & (2) ∠ OAP = 90° & ∠ OBS = 90° Therefore ∠ OAP = ∠ OBS i.e. ∠ BAP = ∠ ABS For lines PQ & RS, and transversal AB ∠ BAP = ∠ ABS i.e. both alternate angles are equal So, lines are parallel ∴ PQ II RS

  1. Chapter 10 Class 10 Circles
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 15 years. He provides courses for Maths, Science and Computer Science at Teachoo