Last updated at Dec. 13, 2024 by Teachoo
Ex 8.1, 7 If cot ฮธ = 7/8 , evaluate : (i) ((1 + ๐ ๐๐โก๐)(1 โ ๐ ๐๐โก๐))/((1 + ๐๐๐ โก๐)(1 โ ๐๐๐ โก๐)) We will first calculate the value of sin ฮธ & cos ฮธ Now, tan ฮธ = 1/cotโก๐ tan ๐ = ๐/๐ We can write tan ๐ = 8/7 (๐๐๐ ๐ ๐๐๐๐๐๐๐๐ โ ๐ฝ)/(๐๐๐ ๐ ๐๐ ๐๐๐๐๐๐ โ ๐ฝ)=๐/๐ ๐ต๐ถ/๐ด๐ต=8/7 Let BC = 8x & AB = 7x We find AC using Pythagoras Theorem In right triangle ABC Using Pythagoras theorem Hypotenuse2 = Height2 + Base2 AC2 = AB2 + BC2 AC2 = (7x)2 + (8x)2 AC2 = 49x2 + 64x2 AC2 = 113x2 AC = โ113๐ฅ2 AC = โ๐๐๐ x AC = โ๐๐๐ x Now, we need to find sin ฮธ and cos ฮธ sin ๐ฝ = (๐ ๐๐๐ ๐๐๐๐๐ ๐๐ก๐ ๐ก๐ โ ๐)/๐ป๐ฆ๐๐๐ก๐๐๐ข๐ ๐ = ๐ต๐ถ/๐ด๐ถ = 8๐ฅ/(โ113 ๐ฅ) = ๐/(โ๐๐๐ ) cos ๐ฝ = (๐ ๐๐๐ ๐๐๐๐๐๐๐๐ก ๐ก๐ โ ๐)/๐ป๐ฆ๐๐๐ก๐๐๐ข๐ ๐ = ๐ด๐ต/๐ด๐ถ = 7๐ฅ/(โ113 ๐ฅ) = ๐/(โ๐๐๐ ) We have to find ((๐ + ๐ฌ๐ข๐งโก๐ฝ ) (๐ โใ ๐ฌ๐ข๐งใโก๐ฝ ))/((๐ + ๐๐จ๐ฌโก๐ฝ ) (๐ โใ ๐๐จ๐ฌใโก๐ฝ ) ) Using (a + b) (a โ b) = a2 โ b2 = ( (12 โ ๐ ๐๐2 ๐))/( (12 โ ๐๐๐ 2๐)) = ( (1 โ ๐ ๐๐2 ๐))/( (1 โ ๐๐๐ 2๐)) Putting sin ๐ฝ = ๐/(โ๐๐๐ ) & cos ฮธ = ๐/(โ๐๐๐ ) = ((1 โ (8/(โ113 ))^2 ))/((1 โ (7/(โ113 ))^2 ) ) = ((๐ โ ๐๐/๐๐๐))/((๐ โ ๐๐/๐๐๐) ) = (((113 โ 64)/113))/(((113 โ 49)/113) ) = (113 โ 64)/(113 โ 49 ) = ๐๐/(๐๐ ) Hence, ((๐ + ๐๐๐โก๐ฝ)(๐ โ ๐๐๐โก๐ฝ))/((๐ + ๐๐๐โก๐ฝ)(๐ โ ๐๐๐โก๐ฝ)) = ๐๐/(๐๐ ) Ex 8.1, 7 If cot ฮธ = 7/8 , evaluate : (ii) cot2 ฮธ Given cot ฮธ = 7/8 So, cot2 ฮธ = (7/8)^2 = 72/82 = ๐๐/๐๐
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo