Last updated at Dec. 13, 2024 by Teachoo
Example 9 Monica has a piece of canvas whose area is 551 m2. She uses it to have a conical tent made, with a base radius of 7 m. Assuming that all the stitching margins and the wastage incurred while cutting, amounts to approximately 1 m2, find the volume of the tent that can be made with it. Let tent have radius = r = 7m Let slant height = l m Let height = h m Area of canvas = Area available for making tent + Wastage 551 m2 = Area available for making tent + 1 m2 Area available for making tent = 551 m2 – 1 m2 = 550 m2 Area available for making tent = Curved surface area of conical tent 550 = πrl 550 = 22/7 × 7 × l 550 = 22 × 1 × l 22 × 1 × l = 550 l = 550/22 m l = 25 m We know that l2 = h2 + r2 252 = h2 + 72 252 – 72 = h2 h2 = 252 – 72 h2 = (25 – 7) (25 + 7) h2 = (18) (32) h = √("18(32)" ) h = √("(9 × 2) × (32)" ) h = √("(9) × (64)" ) h = √("(32) × (82)" ) h = 3 × 8 h = 24 m Volume of tent = 1/3πr2h = 1/3 × 22/7 × 7 × 7 × 24 m3 = 22 × 1 × 7 × 8 m3 = 1232 m3.
Examples
Example 2
Example 3 Important
Example 4
Example 5 Important
Example 6
Example 7
Example 8
Example 9 Important You are here
Example 10
Example 11 Important
Example 12
Surface Area and Volume Formulas Important
Question 1
Question 2 Important
Question 3
Question 4 Important
Question 5
Question 6
Question 7 Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo