Check sibling questions


Transcript

Example, 13 Find the modulus and argument of the complex numbers: (ii) 1/(1 + ๐‘–) First we simplify 1/(1 + ๐‘–) 1/(1 + ๐‘–) Rationalizing = 1/(1 + ๐‘–) ร— (1 โˆ’ ๐‘–)/(1 โˆ’ ๐‘–) = (1 ร— (1 โˆ’ ๐‘–))/(" " (1 + ๐‘–)(1 โˆ’ ๐‘–) ) Using (a โ€“ b) (a + b) = a2 โ€“ b2 = (1 โˆ’ ๐‘–)/((1)^2 โˆ’(๐‘–)^2 ) = (1 โˆ’๐‘–)/(1 โˆ’(โˆ’1) ) = (1 โˆ’ ๐‘–)/(1 + 1 ) = (1 โˆ’ ๐‘–)/2 = 1/2 + ๐‘– ((โˆ’ 1)/2) Now z = 1/2 + ๐‘– ((โˆ’ 1)/2) We calculate modulus by two different methods Method 1 To calculate Modulus of z z = 1/2 + ๐‘– ( (โˆ’ 1)/2 ) Complex number z is of the form ๐‘ฅ + ๐‘–๐‘ฆ Here ๐‘ฅ = 1/2 and ๐‘ฆ = (โˆ’ 1)/2 Modulus of z = |z| = โˆš(๐‘ฅ^2+๐‘ฆ2) = โˆš(( 1/2 )^2+( (โˆ’ 1)/2 )^2 ) = โˆš( 1/4+1/4 ) = โˆš( (1 + 1)/4 ) = โˆš( 2/4 ) = โˆš( 1/(" " 2" " )) = 1/(" " โˆš( 2) " " ) โ‡’ Modulus of ๐‘ง is 1/(" " โˆš( 2) " " ) Method 2 to calculate Modulus of z Given ๐‘ง = 1/2 + ๐‘– ( (โˆ’ 1)/2 ) Let z = ๐‘Ÿ(๐‘๐‘œ๐‘ โกฮธ+๐‘– sin ฮธ) Here r is modulus, and ฮธ is argument Form (1) and (2) 1/2 + ๐‘– ( (โˆ’ 1)/2 ) = ๐‘Ÿ(๐‘๐‘œ๐‘ โกฮธ+๐‘– sin ฮธ) 1/2 + ๐‘– ( (โˆ’ 1)/2 ) = rcos ฮธ + ๐‘– r sin ฮธ Adding (3) and (4) 1/4 + 1/4 = r2 cos2 ฮธ + r2 sin2 ฮธ (1 + 1)/4 = r2 ( cos2 ฮธ + sin2 ฮธ ) 2/4 = ๐‘Ÿ2 (cos2 ฮธ+sin2 ฮธ) 1/2 = ๐‘Ÿ2 ร— 1 โˆš(1/2) = r 1/โˆš2 = ๐‘Ÿ ๐‘Ÿ = 1/โˆš2 โ‡’ Modulus = 1/โˆš2 Finding argument 1/2 + ๐‘– ( (โˆ’ 1)/2 ) = rcos ฮธ + ๐‘– r sin ฮธ Comparing real part 1/2 = r cos ฮธ Put r = 1/โˆš2 1/2 = 1/โˆš2 cos ฮธ โˆš2/2 = cos ฮธ 1/โˆš2 = cos ฮธ โ‡’ cos ฮธ = 1/โˆš2 Hence, cos ฮธ = 1/โˆš2 & sin ฮธ = (โˆ’ 1)/โˆš2 Here, sin ฮธ is negative and cos ฮธ is positive, Hence, ฮธ lies in IVth quadrant So, Argument = โˆ’ 45ยฐ = โˆ’ 45ยฐ ร— ๐œ‹/(180ยฐ) = (โˆ’ ๐œ‹)/4 Hence, argument of ๐‘ง = (โˆ’ ๐œ‹)/4

  1. Chapter 4 Class 11 Complex Numbers
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo