Check sibling questions

 


Transcript

Ex 4.3 ,3 Find the roots of the following equations: (ii) 1/(๐‘ฅ + 4)โˆ’1/(๐‘ฅ โˆ’ 7)=11/30,๐‘ฅโ‰ โˆ’4, 7 1/(๐‘ฅ + 4)โˆ’1/(๐‘ฅ โˆ’ 7)=11/30 ((๐‘ฅ โˆ’ 7) โˆ’ (๐‘ฅ + 4))/((๐‘ฅ + 4)(๐‘ฅ โˆ’ 7)) = 11/30 (๐‘ฅ โˆ’ 7 โˆ’ ๐‘ฅ โˆ’ 4)/((๐‘ฅ + 4)(๐‘ฅ โˆ’ 7)) = 11/30 (โˆ’11)/((๐‘ฅ + 4)(๐‘ฅ โˆ’ 7))=11/30 โˆ’(11 ร— 30)/11=(๐‘ฅ+4)(๐‘ฅโˆ’7) โ€“30 = (x + 4) (x โ€“ 7) (x + 4) (x โ€“ 7) = โ€“30 x (x โ€“ 7) + 4 (x โ€“ 7) = โ€“30 x2 โ€“ 7x + 4x โ€“ 28 = โ€“30 x2 โ€“ 3x โ€“ 28 = โ€“30 x2 โ€“ 3x โ€“ 28 + 30 = 0 x2 โ€“ 3x + 2 = 0 Factorizing by quadratic method Comparing with ax2 + bx + c = 0 Here a = 1, b = โ€“ 3, c = 2 We know that D = b2 โ€“ 4ac D = ( โ€“ 3)2 โ€“ 4ร—1ร—2 D = 9 โ€“ 8 D = 1 Hence roots to equation are x = (โˆ’ ๐‘ ยฑ โˆš๐ท)/2๐‘Ž Putting the values x = (โˆ’ (โˆ’ 3) ยฑ โˆš1)/(2 ร— 1) x =(3 ยฑ 1)/2 Solving Hence x = 2 and x = 1 are the roots of the equation

  1. Chapter 4 Class 10 Quadratic Equations
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo