Last updated at Feb. 13, 2025 by Teachoo
Ex 8.2, 1 ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA. AC is a diagonal. Show that : SR ∥ AC and SR =1/2 AC Given: ABCD is quadrilateral where P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively To prove: SR ∥ AC and SR = 1/2 AC Proof: In ΔADC, S and R are the mid-points of sides AD and CD respectively. ∴ SR ∥ AC and SR = 1/2 AC Ex 8.2, 1 ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA. AC is a diagonal. Show that : (ii) PQ = SR In previous part we proved, SR ∥ AC and SR = 1/2 AC In ΔABC, P and Q are mid-points of sides AB and BC respectively. PQ ∥ AC and PQ = 1/2 AC From (1) & (2) ⇒ PQ = SR & PQ ∥ SR Hence proved Ex 8.2, 1 ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA. AC is a diagonal. Show that : (iii) PQRS is a parallelogram. In previous part we proved PQ = SR Also, we proved PQ ∥ AC & SR ∥ AC So, PQ ∥ SR In PQRS, one pair of opposite sides of is parallel and equal. Hence, PQRS is a parallelogram.
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 15 years. He provides courses for Maths, Science and Computer Science at Teachoo