Multiplication of Monomials by Binomials and Trinomials

Chapter 8 Class 8 Algebraic Expressions and Identities
Concept wise

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class

### Transcript

Ex 8.3, 1 Carry out the multiplication of the expressions in each of the following pairs. (i) 4π, π + π 4πΓ(π+π) = (4πΓπ)+(4πΓπ) = πππ+ππ Ex 8.3, 1 Carry out the multiplication of the expressions in each of the following pairs. (ii) ππ, πβπ ππΓ(πβπ) = (ππΓπ)β(ππΓπ) = (πΓπ)πβπ(πΓπ) = π^π πβππ^π Ex 8.3, 1 Carry out the multiplication of the expressions in each of the following pairs. (iii) π + π, 7π^2 π^2 (π+π)Γ7π^2 π^2 = (πΓ7π^2 π^2 )+(πΓ7π^2 π^2 ) = 7π^3 π^2+7π^2 π^3 Ex 8.3, 1 Carry out the multiplication of the expressions in each of the following pairs. (iv) π^2β 9, 4π (π^2β 9)Γ4π = (π^2Γ4π)β(9Γ4π) = ππ^πβπππ Ex 8.3, 1 Carry out the multiplication of the expressions in each of the following pairs. (v) ππ+ππ+ππ, 0 (ππ+ππ+ππ)Γ0 = (ππΓ0)+(ππΓ0)+(ππΓ0) = 0+0+0 = 0