Check sibling questions

Ex 9.2, 3 - Complete the table of products - 2x, -5y, 3x^2, -4xy

Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 2
Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 3 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 4 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 5 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 6 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 7 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 8 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 9 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 10 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 11 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 12 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 13 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 14 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 15 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 16 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 17 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 18 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 19 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 20 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 21 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 22 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 23 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 24 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 25 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 26 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 27 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 28 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 29 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 30 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 31 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 32 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 33 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 34 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 35 Ex 9.2, 3 - Chapter 9 Class 8 Algebraic Expressions and Identities - Part 36

Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class


Transcript

Ex 8.2, 3 Complete the table of products. For 2x 2π‘₯Γ—2π‘₯ = 2Γ—π‘₯Γ—2Γ—π‘₯ = (2Γ—2)Γ—(π‘₯Γ—π‘₯) = 4 Γ—π‘₯^2 = 4π‘₯^2 Ex 8.2, 3 Complete the table of products. For 2x 2π‘₯Γ—βˆ’5𝑦 = 2Γ—π‘₯Γ—βˆ’5×𝑦 = (2Γ—βˆ’5)Γ—π‘₯×𝑦 = βˆ’10Γ—π‘₯×𝑦 = βˆ’10π‘₯𝑦 Ex 8.2, 3 Complete the table of products. For 2x 2π‘₯Γ—3π‘₯^2 = 2Γ—π‘₯Γ—3Γ—π‘₯^2 = (2Γ—3)Γ—(π‘₯Γ—π‘₯^2 ) = 6Γ—π‘₯^3 = 6π‘₯^3 Ex 8.2, 3 Complete the table of products. For 2x 2π‘₯Γ—βˆ’4π‘₯𝑦 = 2Γ—π‘₯Γ—βˆ’4Γ—π‘₯Γ—y = (2Γ—βˆ’4)Γ—(π‘₯Γ—π‘₯)×𝑦 = βˆ’8Γ—π‘₯^2×𝑦 = βˆ’8π‘₯^2 𝑦 Ex 8.2, 3 Complete the table of products. For 2x 2π‘₯Γ—7π‘₯^2 𝑦 = 2Γ—π‘₯Γ—7Γ—π‘₯^2Γ—y = (2Γ—7)Γ—(π‘₯Γ—π‘₯^2 )×𝑦 = 14Γ—π‘₯^3×𝑦 = 14π‘₯^3 𝑦 Ex 8.2, 3 Complete the table of products. For 2x 2π‘₯Γ—βˆ’9π‘₯^2 𝑦^2 = 2Γ—π‘₯Γ—βˆ’9Γ—π‘₯^2Γ—y^2 = (2Γ—βˆ’9)Γ—(π‘₯Γ—π‘₯^2 )×𝑦^2 = βˆ’18Γ—π‘₯^3×𝑦^2 = βˆ’18π‘₯^3 𝑦^2 Ex 8.2, 3 Complete the table of products. For –5y (βˆ’5𝑦)Γ—2π‘₯ = βˆ’5×𝑦×2Γ—π‘₯ = (βˆ’5Γ—2)Γ—(𝑦×π‘₯) = βˆ’10Γ—π‘₯𝑦 = βˆ’10π‘₯𝑦 Ex 8.2, 3 Complete the table of products. For –5y (βˆ’5𝑦)Γ—(βˆ’5𝑦) = βˆ’5Γ—π‘¦Γ—βˆ’5×𝑦 = (βˆ’5Γ—βˆ’5)Γ—(𝑦×𝑦) = 25×𝑦^2 = 25𝑦^2 Ex 8.2, 3 Complete the table of products. For –5y (βˆ’5𝑦)Γ—3π‘₯^2 = βˆ’5Γ—π‘¦Γ—βˆ’5Γ—π‘₯^2 = (βˆ’5Γ—3)×𝑦×π‘₯^2 = βˆ’15Γ—π‘₯^2×𝑦 = βˆ’15π‘₯^2 𝑦 Ex 8.2, 3 Complete the table of products. For –5y (βˆ’5𝑦)Γ—(βˆ’4π‘₯𝑦) = βˆ’5Γ—π‘¦Γ—βˆ’4Γ—π‘₯×𝑦 = (βˆ’5Γ—βˆ’4)×𝑦×𝑦×π‘₯ = 20×𝑦^2Γ—π‘₯ = 20𝑦^2 π‘₯ Ex 8.2, 3 Complete the table of products. For –5y (βˆ’5𝑦)Γ—7π‘₯^2 𝑦 = βˆ’5×𝑦×7Γ—π‘₯^2×𝑦 = (βˆ’5Γ—7)Γ—(𝑦×𝑦)Γ—π‘₯^2 = βˆ’35×𝑦^2Γ—π‘₯^2 = βˆ’35𝑦^2 π‘₯^2 Ex 8.2, 3 Complete the table of products. For –5y (βˆ’5𝑦)Γ—(βˆ’9π‘₯^2 𝑦^2 ) = βˆ’5×𝑦×(βˆ’9)Γ—π‘₯^2×𝑦^2 = (βˆ’5Γ—βˆ’9)Γ—π‘₯^2Γ—(𝑦×𝑦^2 ) = 45Γ—π‘₯^2×𝑦^3 = 45π‘₯^2 𝑦^3 Ex 8.2, 3 Complete the table of products. For 3x2 3π‘₯^2Γ—2π‘₯ = 5Γ—π‘₯^2Γ—2Γ—π‘₯ = (3Γ—2)Γ—(π‘₯^2Γ—π‘₯) = 6Γ—π‘₯^3 = 6π‘₯^3 Ex 8.2, 3 Complete the table of products. For 3x2 3π‘₯^2Γ—(βˆ’5𝑦) = 3Γ—π‘₯^2Γ—βˆ’5×𝑦 = (3Γ—βˆ’5)Γ—π‘₯^2×𝑦 = βˆ’15π‘₯^2 𝑦^2 Ex 8.2, 3 Complete the table of products. For 3x2 3π‘₯^2Γ—3π‘₯^2 = 3Γ—π‘₯^2Γ—3Γ—π‘₯^2 = (3Γ—3)Γ—(π‘₯^2Γ—π‘₯^2 ) = 9Γ—π‘₯^4 = 9π‘₯^4 Ex 8.2, 3 Complete the table of products. For 3x2 3π‘₯^2Γ—(βˆ’4π‘₯𝑦) = 3Γ—π‘₯^2Γ—βˆ’4Γ—π‘₯×𝑦 = (3Γ—βˆ’4)Γ—(π‘₯^2Γ—π‘₯)×𝑦 = βˆ’12Γ—π‘₯^3×𝑦 = βˆ’12π‘₯^3 𝑦 Note: π‘₯π‘Ž Γ—π‘₯𝑏 = π‘₯^(π‘Ž + 𝑏) Ex 8.2, 3 Complete the table of products. For 3x2 3π‘₯^2Γ—7π‘₯^2 𝑦 = 3Γ—π‘₯^2Γ—7Γ—π‘₯^2×𝑦 = (3Γ—7)Γ—(π‘₯^2Γ—π‘₯^2 )×𝑦 = 21Γ—π‘₯^4×𝑦 = 21π‘₯^4 𝑦 Ex 8.2, 3 Complete the table of products. For 3x2 3π‘₯^2Γ—(βˆ’9π‘₯^2 𝑦^2) = 3Γ—π‘₯^2Γ—7Γ—π‘₯^2×𝑦 = (3Γ—βˆ’9)Γ—(π‘₯^2Γ—π‘₯^2 )×𝑦^2 = βˆ’27Γ—π‘₯^4×𝑦^2 = βˆ’27π‘₯^4 𝑦^2 Ex 8.2, 3 Complete the table of products. For βˆ’πŸ’π’™π’š (βˆ’4π‘₯𝑦)Γ—2π‘₯ = βˆ’4Γ—π‘₯×𝑦×2Γ—π‘₯ = (βˆ’4Γ—2)Γ—(π‘₯Γ—π‘₯)×𝑦 = βˆ’8Γ—π‘₯^2×𝑦 = βˆ’8π‘₯^2 𝑦 Ex 8.2, 3 Complete the table of products. For βˆ’πŸ’π’™π’š (βˆ’4π‘₯𝑦)Γ—(βˆ’5𝑦) = βˆ’4Γ—π‘₯Γ—π‘¦Γ—βˆ’5×𝑦 = (βˆ’4Γ—βˆ’5)Γ—π‘₯Γ—(𝑦×𝑦) = 20Γ—π‘₯×𝑦^2 = 20π‘₯𝑦^2 Ex 8.2, 3 Complete the table of products. For βˆ’πŸ’π’™π’š (βˆ’4π‘₯𝑦)Γ—3π‘₯^2 = βˆ’4Γ—π‘₯×𝑦×3Γ—π‘₯^2 = (βˆ’4Γ—3)Γ—(π‘₯Γ—π‘₯^2 )×𝑦 = βˆ’12Γ—π‘₯^3×𝑦 = βˆ’12π‘₯^3 𝑦 Ex 8.2, 3 Complete the table of products. For βˆ’πŸ’π’™π’š (βˆ’4π‘₯𝑦)Γ—(βˆ’4π‘₯𝑦) = βˆ’4Γ—π‘₯Γ—π‘¦Γ—βˆ’4Γ—π‘₯×𝑦 = (βˆ’4Γ—βˆ’4)Γ—(π‘₯Γ—π‘₯)Γ—(𝑦×𝑦) = 16Γ—π‘₯^2×𝑦^2 = 16π‘₯^2 𝑦^2 Ex 8.2, 3 Complete the table of products. For βˆ’πŸ’π’™π’š (βˆ’4π‘₯𝑦)Γ—7π‘₯^2 𝑦 = βˆ’4Γ—π‘₯×𝑦×7Γ—π‘₯^2×𝑦 = (βˆ’4Γ—7)Γ—(π‘₯Γ—π‘₯^2 )Γ—(𝑦×𝑦) = βˆ’28Γ—π‘₯^3×𝑦^2 = βˆ’28π‘₯^3 𝑦^2 Ex 8.2, 3 Complete the table of products. For βˆ’πŸ’π’™π’š (βˆ’4π‘₯𝑦)Γ—(βˆ’9π‘₯^2 𝑦^2 ) = βˆ’4Γ—π‘₯Γ—π‘¦Γ—βˆ’9Γ—π‘₯^2×𝑦^2 = (βˆ’4Γ—βˆ’9)Γ—(π‘₯Γ—π‘₯^2 )Γ—(𝑦×𝑦^2 ) = 36Γ—π‘₯^3×𝑦^3 = 36π‘₯^3 𝑦^3 Ex 8.2, 3 Complete the table of products. For πŸ•π’™^𝟐 π’š (7π‘₯^2 𝑦)Γ—2π‘₯ = 7Γ—π‘₯^2×𝑦×2Γ—π‘₯ = (7Γ—2)Γ—(π‘₯^2Γ—π‘₯)×𝑦 = 14Γ—π‘₯^3×𝑦 = 14π‘₯^3 𝑦 Ex 8.2, 3 Complete the table of products. For πŸ•π’™^𝟐 π’š (7π‘₯^2 𝑦)Γ—(βˆ’5𝑦) = 7Γ—π‘₯^2Γ—π‘¦Γ—βˆ’5×𝑦 = (7Γ—βˆ’5)Γ—π‘₯^2Γ—(𝑦×𝑦) = βˆ’35Γ—π‘₯^2×𝑦^2 = βˆ’35π‘₯^2 𝑦^2 Ex 8.2, 3 Complete the table of products. For πŸ•π’™^𝟐 π’š (7π‘₯^2 𝑦)Γ—3π‘₯^2 = 7Γ—π‘₯^2×𝑦×3Γ—π‘₯^2 = (7Γ—3)Γ—(π‘₯^2Γ—π‘₯^2 )×𝑦 = 21Γ—π‘₯^4×𝑦 = 21π‘₯^4 𝑦 Ex 8.2, 3 Complete the table of products. For πŸ•π’™^𝟐 π’š (7π‘₯^2 𝑦)Γ—(βˆ’4π‘₯𝑦) = 7Γ—π‘₯^2Γ—π‘¦Γ—βˆ’4Γ—π‘₯×𝑦 = (7Γ—βˆ’4)Γ—(π‘₯^2Γ—π‘₯)Γ—(𝑦×𝑦) = βˆ’28Γ—π‘₯^3×𝑦^2 = βˆ’28π‘₯^3 𝑦^2 Ex 8.2, 3 Complete the table of products. For πŸ•π’™^𝟐 π’š (7π‘₯^2 𝑦)Γ—(7π‘₯^2 𝑦) = 7Γ—π‘₯^2×𝑦×7Γ—π‘₯^2×𝑦 = (7Γ—7)Γ—(π‘₯^2Γ—π‘₯^2 )Γ—(𝑦×𝑦) = 49Γ—π‘₯^4×𝑦^2 = 49π‘₯^4 𝑦^2 Ex 8.2, 3 Complete the table of products. For πŸ•π’™^𝟐 π’š (7π‘₯^2 𝑦)Γ—(βˆ’9π‘₯^2 𝑦^2 ) = 7Γ—π‘₯^2Γ—π‘¦Γ—βˆ’9Γ—π‘₯^2×𝑦^2 = (7Γ—βˆ’9)Γ—(π‘₯^2Γ—π‘₯^2 )Γ—(𝑦×𝑦^2 ) = βˆ’63Γ—π‘₯^4×𝑦^3 = βˆ’63π‘₯^4 𝑦^3 Ex 8.2, 3 Complete the table of products. For βˆ’πŸ—π’™^𝟐 π’š^𝟐 (βˆ’9π‘₯^2 𝑦^2 )Γ—2π‘₯ = βˆ’9Γ—π‘₯^2×𝑦^2Γ—2Γ—π‘₯ = (βˆ’9Γ—2)Γ—(π‘₯^2Γ—π‘₯)×𝑦^2 = βˆ’18Γ—π‘₯^3×𝑦^2 = βˆ’18π‘₯^3 𝑦^2 Ex 8.2, 3 Complete the table of products. For βˆ’πŸ—π’™^𝟐 π’š^𝟐 (βˆ’9π‘₯^2 𝑦^2 )Γ—βˆ’5𝑦 = βˆ’9Γ—π‘₯^2×𝑦^2Γ—βˆ’5×𝑦 = (βˆ’9Γ—βˆ’5)Γ—π‘₯^2Γ—(𝑦^2×𝑦) = 45Γ—π‘₯^2×𝑦^3 = 45π‘₯^2 𝑦^3 Ex 8.2, 3 Complete the table of products. For βˆ’πŸ—π’™^𝟐 π’š^𝟐 (βˆ’9π‘₯^2 𝑦^2 )Γ—(3π‘₯^2) = βˆ’9Γ—π‘₯^2×𝑦^2Γ—3Γ—π‘₯^2 = (βˆ’9Γ—3)Γ—(π‘₯^2Γ—π‘₯^2 )×𝑦^2 = βˆ’27Γ—π‘₯^4×𝑦^2 = βˆ’27π‘₯^4 𝑦^2 Ex 8.2, 3 Complete the table of products. For βˆ’πŸ—π’™^𝟐 π’š^𝟐 (βˆ’9π‘₯^2 𝑦^2 )Γ—(βˆ’4π‘₯𝑦) = βˆ’9Γ—π‘₯^2×𝑦^2Γ—βˆ’4Γ—π‘₯×𝑦 = (βˆ’9Γ—βˆ’4)Γ—(π‘₯^2Γ—π‘₯)Γ—(𝑦^2×𝑦) = 36Γ—π‘₯^3×𝑦^3 = 36π‘₯^3 𝑦^3 Ex 8.2, 3 Complete the table of products. For βˆ’πŸ—π’™^𝟐 π’š^𝟐 (βˆ’9π‘₯^2 𝑦^2 )Γ—7π‘₯^2 𝑦 = βˆ’9Γ—π‘₯^2×𝑦^2Γ—7Γ—π‘₯^2×𝑦 = (βˆ’9Γ—7)Γ—(π‘₯^2Γ—π‘₯^2 )Γ—(𝑦^2×𝑦) = βˆ’63Γ—π‘₯^4×𝑦^3 = βˆ’63π‘₯^4 𝑦^3 Ex 8.2, 3 Complete the table of products. For βˆ’πŸ—π’™^𝟐 π’š^𝟐 (βˆ’9π‘₯^2 𝑦^2 )Γ—(βˆ’9π‘₯^2 𝑦^2 ) = βˆ’9Γ—π‘₯^2×𝑦^2Γ—βˆ’9Γ—π‘₯^2×𝑦^2 = (βˆ’9Γ—βˆ’9)Γ—(π‘₯^2Γ—π‘₯^2 )Γ—(𝑦^2×𝑦^2 ) = 81Γ—π‘₯^4×𝑦^4 = 81π‘₯^4 𝑦^4 Note: π‘₯π‘Ž Γ—π‘₯𝑏 = π‘₯^(π‘Ž + 𝑏) So, the completed table looks like

Ask a doubt
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 13 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.