Ex 9.4, 12 - Find particular solution: x2 dy + (xy + y2) dx = 0 - Ex 9.4

part 2 - Ex 9.4, 12 - Ex 9.4 - Serial order wise - Chapter 9 Class 12 Differential Equations
part 3 - Ex 9.4, 12 - Ex 9.4 - Serial order wise - Chapter 9 Class 12 Differential Equations
part 4 - Ex 9.4, 12 - Ex 9.4 - Serial order wise - Chapter 9 Class 12 Differential Equations
part 5 - Ex 9.4, 12 - Ex 9.4 - Serial order wise - Chapter 9 Class 12 Differential Equations part 6 - Ex 9.4, 12 - Ex 9.4 - Serial order wise - Chapter 9 Class 12 Differential Equations

Share on WhatsApp

Transcript

Ex 9.4, 12 For each of the differential equations in Exercises from 11 to 15 , find the particular solution satisfying the given condition : š‘„^2 š‘‘š‘¦+(š‘„š‘¦+š‘¦^2 ) š‘‘š‘„=0;š‘¦=1 When š‘„=1The differential equation can be written š‘Žs š‘„^2 š‘‘š‘¦ = āˆ’(xy + y2) dx š‘‘š‘¦/š‘‘š‘„ = (āˆ’(š‘„š‘¦ + š‘¦^2 ))/š‘„^2 "Let F(x, y) = " š‘‘š‘¦/š‘‘š‘„ " =" (āˆ’(š‘„š‘¦ +š‘¦^2 ))/š‘„^2 Finding F(š€x, š€y) F(šœ†x, šœ†y) = (āˆ’(šœ†š‘„šœ†š‘¦ + šœ†^2 š‘¦^2 ))/ć€–šœ†^2 š‘„ć€—^2 = (āˆ’šœ†^2 (š‘„š‘¦ + š‘¦^2 ))/ć€–šœ†^2 š‘„ć€—^2 = (āˆ’(š‘„š‘¦ + š‘¦^2 ))/š‘„^2 = šœ†Ā° F(x, y) = F(x, y) = (āˆ’(š‘„š‘¦ +š‘¦^2 ))/š‘„^2 ∓ F(x, y) is a homogenous function of degree zero Putting y = vx Diff w.r.t. x š’…š’š/š’…š’™ = x š’…š’—/š’…š’™ + v Putting value of š‘‘š‘¦/š‘‘š‘„ and y = vx in (1) š‘‘š‘¦/š‘‘š‘„ = (āˆ’(š‘„š‘¦ + š‘¦^2 ))/š‘„^2 v + (š’™ š’…š’—)/š’…š’™ = (āˆ’(š’™(š’—š’™) + (š’—š’™)^šŸ ))/š’™^šŸ v + (š‘„ š‘‘š‘£)/š‘‘š‘„ = (āˆ’(š‘„^2 š‘£ + š‘„^2 š‘£^2))/š‘„^2 v + (š‘„ š‘‘š‘£)/š‘‘š‘„ = āˆ’š‘„^2 ((š‘£ + š‘£^2))/š‘„^2 v + (š‘„ š‘‘š‘£)/š‘‘š‘„ = āˆ’(v2 + v) (š‘„ š‘‘š‘£)/š‘‘š‘„ = āˆ’ v2 āˆ’ v āˆ’ v (š‘„ š‘‘š‘£)/š‘‘š‘„ = āˆ’(š‘£^2+2š‘£) š’…š’—/(š’—^šŸ + šŸš’—) = āˆ’ š’…š’™/š’™ Integrating both sides ∫1ā–’š‘‘š‘£/(š‘£^2 + 2š‘£) = āˆ’āˆ«1ā–’š‘‘š‘„/š‘„ ∫1ā–’š‘‘š‘£/(š‘£^2 + 2š‘£) = āˆ’ log x + log c ∫1ā–’š‘‘š‘£/(怖(š‘£ć€—^2 + 2š‘£ + 1) āˆ’ 1) = āˆ’ log x + log c ∫1ā–’š’…š’—/((š’— + šŸ)^šŸ āˆ’ šŸ^šŸ ) = āˆ’ log x + log c šŸ/šŸ log (š’— + šŸ āˆ’ šŸ)/(š’— + šŸ + šŸ) = āˆ’ log x + log c 1/2 log š‘£/(š‘£ + 2) = āˆ’ log x + log c log āˆšš‘£/√(š‘£ + 2) = āˆ’ log x + log C log āˆšš’—/√(š’— + šŸ) + log x = log C log (š‘„ āˆšš‘£)/√(š‘£ + 2) = log C Using ∫1ā–’š‘‘š‘„/(š‘„^2 āˆ’ š‘Ž^2 ) = 1/2š‘Ž log |(š‘„ āˆ’ š‘Ž)/(š‘„ + š‘Ž)|+š¶ (š‘„āˆšš‘£)/√(š‘£ + 2) = C Putting value of v i.e š‘¦/š‘„ (š’™āˆš(š’š/š’™))/√(š’š/š’™ + šŸ) = C √(š‘„^2 Ɨ š‘¦/š‘„)/√(š‘¦/š‘„ + 2) = C āˆšš‘„š‘¦/√((š‘¦ + 2š‘„)/š‘„) = C (š‘„āˆšš‘¦)/√(š‘¦ + 2š‘„) = C š‘„āˆšš‘¦ = C√(š‘¦+2š‘„) Squaring both sides x2y = c2(y + 2x) Putting x = 1 & y = 1 in (2) 12(1) = C2(1 + 2) 1 = 3C2 C2 = šŸ/šŸ‘ Putting value in (2) x2 y = 1/3(y + 2x) 3x2y = y + 2x y + 2x = 3x2y

Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo