Ex 12.2, 3 - Verify (i) (0, 7, -10), (1, 6, -6), (4, 9, -6)

Ex 12.2,  3 - Chapter 12 Class 11 Introduction to Three Dimensional Geometry - Part 2
Ex 12.2,  3 - Chapter 12 Class 11 Introduction to Three Dimensional Geometry - Part 3

 

 

  1. Chapter 12 Class 11 - Intro to Three Dimensional Geometry (Term 2)
  2. Serial order wise

Transcript

Ex 12.2, 3 Verify the following: (i) (0, 7, –10), (1, 6, –6) and (4, 9, –6) are the vertices of an isosceles triangle. Let points be A (0, 7, – 10) , B (1, 6, – 6) & C (4, 9, – 6) If any 2 sides are equal, it will be an isosceles triangle Lets calculate AB, BC, AC Calculating AB A (0, 7, – 10) B (1, 6, – 6) AB = √((x2−x1)2+(y2−y1)2+(z2 −z1)2) Here, x1 = 0, y1 = 7, z1 = – 10 x2 = 1, y2 = 6, z2 = – 6 AB = √((1−0)2+(6−7)2+(−6+10)2) = √((1)2+(−1)2+(4)2) = √(1+1+16) = √18 = 3√2 Calculating BC B (1, 6, –6) C (4, 9, –6) BC = √((x2−x1)2+(y2−y1)2+(z2 −z1)2) Here x1 = 1, y1 = 6, z1 = – 6 x2 = 4, y2 = 9, z2 = – 6 BC = √((4−1)2+(9−6)2+(−6−(−6))2) = √((3)2+(3)2+(−6+6)2) = √(9+9+0) = √18 Since AB = BC ∴ 2 Sides are equal Hence, ABC is an isosceles triangle Note: We don’t need to calculate AC

About the Author

Davneet Singh's photo - Teacher, Engineer, Marketer
Davneet Singh
Davneet Singh is a graduate from Indian Institute of Technology, Kanpur. He has been teaching from the past 10 years. He provides courses for Maths and Science at Teachoo.