Learn in your speed, with individual attention - Teachoo Maths 1-on-1 Class

Ellipse - Defination

Example 9

Ex 10.3, 1

Ex 10.3, 3

Ex 10.3, 5 Important

Ex 10.3, 2 Important

Ex 10.3, 4

Ex 10.3, 6

Ex 10.3, 9

Example 10 Important

Ex 10.3, 8

Ex 10.3, 7 Important

Ex 10.3, 10

Example, 11

Ex 10.3, 12 Important

Ex 10.3, 11 Important

Ex 10.3, 13

Ex 10.3, 14 Important

Ex 10.3, 15

Example 12 Important

Ex 10.3, 16 Important

Ex 10.3, 17

Ex 10.3, 18 Important

Example 13 Important You are here

Ex 10.3, 19 Important

Ex 10.3, 20

Last updated at May 29, 2023 by Teachoo

Example 13 Find the equation of the ellipse, with major axis along the x-axis and passing through the points (4, 3) and (– 1,4). Given that Major axis is along x-axis So required equation of ellipse is 𝒙^𝟐/𝒂^𝟐 + 𝒚^𝟐/𝒃^𝟐 = 1 Given that point (4, 3) & (−1, 4) lie of the ellipse So, point (4, 3) & (−1, 4) will satisfy equation of ellipse Putting x = 4 & y = 3 in (1) 𝑥^2/𝑎^2 + 𝑦^2/𝑏^2 = 1 〖(4)〗^2/𝑎^2 + 〖(3)〗^2/𝑏^2 = 1 𝟏𝟔/𝒂^𝟐 + 𝟗/𝒃^𝟐 = 1 Putting x = −1, y = 4 is in (1) 𝑥^2/𝑎^2 + 𝑦^2/𝑏^2 = 1 〖(−1)〗^2/𝑎^2 + 〖(4)〗^2/𝑏^2 = 1 𝟏/𝒂^𝟐 + 𝟏𝟔/𝒃^𝟐 = 1 Now, our equations are 16/𝑎^2 + 9/𝑏^2 = 1 1/𝑎^2 + 16/𝑏^2 = 1 From (3) 1/𝑎^2 +16/𝑏^2 = 1 1/𝑎^2 " "= 1−16/𝑏^2 Putting value of 1/𝑎^2 in (2) 16/𝑎^2 + 9/𝑏^2 = 1 16(1/𝑎^2 ) + 9/𝑏^2 = 1 16(1−16/𝑏^2 ) + 9/𝑏^2 = 1 16 − 256/𝑏^2 + 9/𝑏^2 = 1 (−256 + 9)/𝑏^2 = 1 −16 (−247)/𝑏^2 = −15 b2 = (−247)/(−15) b2 = 𝟐𝟒𝟕/𝟏𝟓 Putting value of b2 = 247/15 in (3) 1/𝑎^2 " "= 1−16/𝑏^2 1/𝑎^2 " "= 1−16/(247/15) 1/𝑎^2 " "= 1−(16 × 15)/247 1/𝑎^2 " "= (247 − 240)/247 1/𝑎^2 " "= 7/247 𝐚𝟐 = 𝟐𝟒𝟕/𝟕 Thus, a2 = 247/7 & b2 = 247/15 Hence required of ellipse is 𝑥^2/𝑎^2 + 𝑦^2/𝑏^2 = 1 Putting values of a2 & b2 𝑥^2/((247/7) ) + 𝑦^2/((247/15) ) = 1 1/𝑎^2 " "= 1−(16 × 15)/247 1/𝑎^2 " "= (247 − 240)/247 1/𝑎^2 " "= 7/247 𝐚𝟐 = 𝟐𝟒𝟕/𝟕 Thus, a2 = 247/7 & b2 = 247/15 Hence required of ellipse is 𝑥^2/𝑎^2 + 𝑦^2/𝑏^2 = 1 Putting values of a2 & b2 𝑥^2/((247/7) ) + 𝑦^2/((247/15) ) = 1 (7𝑥^2)/247 + (15𝑦^2)/247 = 1 7x2 + 15y2 = 247