# Example 1 - Chapter 8 Class 11 Binomial Theorem (Deleted)

Last updated at Jan. 29, 2020 by Teachoo

Expansion

Ex 8.1,1
Deleted for CBSE Board 2022 Exams

Ex 8.1,3 Deleted for CBSE Board 2022 Exams

Ex 8.1, 5 Deleted for CBSE Board 2022 Exams

Ex 8.1,4 Important Deleted for CBSE Board 2022 Exams

Ex 8.1,2 Important Deleted for CBSE Board 2022 Exams

Example 1 Deleted for CBSE Board 2022 Exams You are here

Ex 8.1,11 Deleted for CBSE Board 2022 Exams

Misc 6 Deleted for CBSE Board 2022 Exams

Ex 8.1,12 Important Deleted for CBSE Board 2022 Exams

Misc 5 Important Deleted for CBSE Board 2022 Exams

Ex 8.1,14 Important Deleted for CBSE Board 2022 Exams

Misc 10 Deleted for CBSE Board 2022 Exams

Misc 9 Important Deleted for CBSE Board 2022 Exams

Proving binomial theorem by mathematical induction

Last updated at Jan. 29, 2020 by Teachoo

Example 1 Expand ("x2 + " 3/x)^4 , x ≠ 0 We know that (a + b)n = nC0 an + nC1 an – 1 b1 + nC2 an – 2 b2 + ….…. + nCn – 1 a1 bn – 1 + nCn bn Hence, (a + b)4 = 4C0 a4 + 4C1 a3 b1 + 4C2 a2 b2 + 4C3 a1b3 + 4C4 b4 = 4!/0!( 4 − 0)! a4 + 4!/(1! (4 − 1)!) a2 b2 + 4!/2!(4 − 2)! ab3 + 4!/(4!(4 − 4)!) b4 = 4!/(1 × 4!) a4 + 4!/(1 × 3!) a3 b + 4!/(2 × 2!) a2 b2 + 4!/(6 × 1!) ab3 + 4!/(4! × 0!) b4 = a4 + 4a3 b + 6a2 b2 + 4 ab3 + b4 Hence, (a + b)4 = a4 + 4a3 b + 6a2 b2 + 4 ab3 + b4 Putting a = x2 and b = 𝟑/𝒙 ("x2 + " 3/x)^4 = (𝑥^2 )^4 + 4 (𝑥^2 )^3 (3/x) + 6(𝑥^2 )^2 (3/x)^2 + 4 (𝑥^2 ) (3/x)^3+ (3/x)^4 = 𝑥8 + 4x6 . 3/𝑥 + 6𝑥4 . 9/𝑥2 + 4 𝑥2 . 27/𝑥3 + 81/𝑥4 = 𝑥8 + 12 𝑥6/𝑥 + 54 . 𝑥4/𝑥2 + 108 . 𝑥2/𝑥3 + 81/𝑥4 = 𝒙𝟖 + 12 𝒙5 + 54 𝒙2 + 𝟏𝟎𝟖/𝒙 + 𝟖𝟏/𝒙𝟒