Proof- Solving
Last updated at April 16, 2024 by Teachoo
Example, 15 Find real θ such that (3 + 2i sinθ)/(1 − 2isin θ) is purely real Since (3 + 2i sinθ)/(1 − 2isin θ) is purely real We need to first solve (3 + 2i sinθ)/(1 − 2isin θ) and then take imaginary part as 0 (3 + 2i sinθ)/(1 − 2isin θ) Rationalizing = (3 + 2i sinθ)/(1 − 2isin θ) × (1 + 2isin θ)/(1 + 2isin θ) = ((3 + 2i sinθ ) ( 1 + 2i sinθ) )/(1 − 2i sin θ)(1 + 2i sin θ) = (3(1 + 2i sin〖θ) + 2𝑖 sinθ (1 + 2i sin θ") " 〗)/( 1 − 2i sin θ)(1 + 2i sin θ) = (3 + 6i sin〖θ + 2𝑖 sinθ + (2i sin θ)2" " 〗)/(1 − 2i sin θ)(1+ 2i sin θ) = (3 + 8i sin〖θ + 4i2 sin2 θ" " 〗)/(1 − 2i sin θ)(1 + 2i sin θ) Using ( a – b ) ( a + b ) = a2 – b2 = (3 + 8i sin〖θ + 4i2 sin2 θ" " 〗)/(12 −(2i sin θ)2) = (3 + 8i sin〖θ + 4i2 sin2 θ" " 〗)/(1 − 4i2 sin2 θ) Putting i2 = − 1 = (3 + 8i sin〖θ + 4(−1) sin2 θ" " 〗)/(1 − 4 (−1) sin2 θ) = (3 + 8i sin〖θ − 4 sin2 θ" " 〗)/(1 + 4 sin2 θ) = (3 + 8i sin〖θ − 4 sin2 θ" " 〗)/(1 + 4 sin2 θ) = (3 − 4 sin2 θ + 8i sin〖θ 〗)/(1 + 4 sin2 θ) = (3 − 4 sin2 θ )/(1 + 4 sin2 θ) + 𝑖 ( 8 sin〖θ 〗)/(1 + 4 sin2 θ) Hence, (3 + 2i sinθ)/(1 − 2isin θ) = (3 − 4 sin2 θ )/(1 + 4 sin2 θ) + 𝑖 ( 8 sin〖θ 〗)/(1 + 4 sin2 θ) Since (3 + 2i sinθ)/(1 − 2isin θ) is purely real given Hence imaginary part of is equal to 0 i.e. ( 8 sin〖θ 〗)/(1 + 4 sin2 θ) = 0 8 sinθ= 0 ×(1 + 4 sin2θ ) 8 sin θ = 0 sin θ = 0/8 sinθ = 0 sinθ = sin 0 Since sin θ = sin𝑦 Then θ = n𝜋 ± y , where n ∈ Z Putting y = 0 θ = n𝜋 ± 0 θ = n𝜋 where n ∈ Z Hence for θ = n𝜋 ,where n ∈ Z (3 + 2𝑖 sin𝜃)/(1 − 2𝑖 sin 𝜃) is purely real