Example 3 - Prove 1/1.2 + 1/2.3 + 1/3.4 .. + 1/n(n + 1) = 1/n+1 - Equal - 1 upon addition

Example 3 - Chapter 4 Class 11 Mathematical Induction - Part 2
Example 3 - Chapter 4 Class 11 Mathematical Induction - Part 3
Example 3 - Chapter 4 Class 11 Mathematical Induction - Part 4


Transcript

Example 3 For all n ≥ 1, prove that 1/1.2 + 1/2.3 + 1/3.4 +…….+ 1/(𝑛(𝑛 + 1)) = 1/(𝑛 + 1) Let P (n) : 1/1.2 + 1/2.3 + 1/3.4 +…….+ 1/(𝑛(𝑛 + 1)) = 1/(𝑛 + 1) For n=1, L.H.S = 1/1.2 = 1/2 R.H.S = 1/(1+1) = 1/2 Hence, L.H.S. = R.H.S , ∴ P(n) is true for n = 1 Assume P(k) is true 1/1.2 + 1/2.3 + 1/3.4 +…….+ 1/(𝑘(𝑘+1)) = 𝑘/(𝑘+1) We will prove that P(k + 1) is true. R.H.S = ((k + 1))/(((k + 1)+ 1) ) L.H.S =1/1.2 + 1/2.3 + 1/3.4 +…….+ 1/((k + 1)((k + 1)+ 1)) ∴ By the principle of mathematical induction, P(n) is true for n, where n is a natural number

Go Ad-free
Davneet Singh's photo - Co-founder, Teachoo

Made by

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science, Social Science, Physics, Chemistry, Computer Science at Teachoo.