Divisible
Example 4 Important Deleted for CBSE Board 2025 Exams
Question 23 Important Deleted for CBSE Board 2025 Exams
Question 22 Deleted for CBSE Board 2025 Exams
Example 6 Important Deleted for CBSE Board 2025 Exams
Question 21 Important Deleted for CBSE Board 2025 Exams
Question 19 Deleted for CBSE Board 2025 Exams
Last updated at April 16, 2024 by Teachoo
Question20 Prove the following by using the principle of mathematical induction for all n ∈ N: 102n – 1 + 1 is divisible by 11. Introduction If a number is divisible by 11, 22 = 11 × 2 = 11 × 7 = 11 × 9 Any number divisible by 11 = 11 × Natural number Question20 Prove the following by using the principle of mathematical induction for all n ∈ N: 102n – 1 + 1 is divisible by 11. Let P(n): 102n – 1 + 1 = 11d where d ∈ N For n=1, L.H.S = 102.1 – 1 + 1 = 101 + 1 = 10 + 1 = 11 = 11 × 1 = R.H.S ∴P(n) is true for n = 1 Assume P(k) is true 102k – 1 + 1 = 11m, where m ∈ N We will prove that P(k + 1) is true. L.H.S = 102(k+1) – 1 + 1 = 102k+2 - 1 + 1 = 10( 2k - 1) + 2 + 1 = 10(2k - 1) .102 + 1 = (11m – 1) .102 + 1 = (11m – 1) × 100 + 1 = 100 × 11m – 100 + 1 = 100 × 11m – 99 = 100 × 11m – 9 × 11 = 11 (100m – 9) = 11r ,where r = (100m – 9) is some natural number ∴ P(k + 1) is true whenever P(k) is true. ∴ By the principle of mathematical induction, P(n) is true for n, where n is a natural number