Question 1 (ii) - Section Formula in 3D Geometry - Chapter 11 Class 11 - Intro to Three Dimensional Geometry
Last updated at Dec. 16, 2024 by Teachoo
Section Formula in 3D Geometry
Section Formula in 3D Geometry
Last updated at Dec. 16, 2024 by Teachoo
Question 1 Find the coordinates of the point which divides the line segment joining the points (–2, 3, 5) and (1, –4, 6) in the ratio (ii) 2:3 externally. Let A be (–2, 3, 5) & B be (1, –4, 6) Let coordinate of point P be (x, y, z) that divides the line joining A & B in the ratio of 2 : 3 externally We know that Coordinate of P that divide the line segment joining A(x1, y1, z1) & B(x2, y2, z2) externally in the ratio m: n is P(x, y, z) = ((〖𝑚 𝑥〗_2 −〖 𝑛 𝑥〗_1)/(𝑚 − 𝑛),(〖𝑚 𝑦〗_2 −〖 𝑛 𝑦〗_1)/(𝑚 − 𝑛),(〖𝑚 𝑧〗_(2 )−〖 𝑛 𝑧〗_1)/(𝑚 − 𝑛)) Here, x1 = – 2, y1 = 3, z1 = 5 x2 = 1, y2 = – 4, z2 = 6 & m = 2 , n = 3 Putting values (x, y, z) = ((2(1) − 3(−2))/(2 − 3),(2 (−4) − 3(3))/(2 − 3),(2(6) − 3(5))/(2 − 3)) = ((2 + 6)/( −1),(− 8 − 9)/(− 1),(12 −15)/( −1)) = (8/( −1),(− 17)/(− 1),(− 3)/( −1)) = (–8, 17, 3) Thus, the required coordinate of point P is (–8, 17, 3)