Check sibling questions


Transcript

Question 7 Let A (4, 2), B(6, 5) and C(1, 4) be the vertices of ฮ” ABC. (i) The median from A meets BC at D. Find the coordinates of the point D. Since Median is AD D is the mid-point of BC Coordinates of D = Coordinates of mid-point of BC = ((๐‘ฅ_1 + ๐‘ฅ_2)/2, (๐‘ฆ_1 + ๐‘ฆ_2)/2) Here ๐‘ฅ_1=6 ๐‘ฆ_1=5 ๐‘ฅ_2=1 ๐‘ฆ_2=4 Coordinates of D = ((๐‘ฅ_1 + ๐‘ฅ_2)/2, (๐‘ฆ_1 + ๐‘ฆ_2)/2) = ((6 + 1)/2, (5 + 7)/2) = (๐Ÿ•/๐Ÿ,๐Ÿ—/๐Ÿ) Question 7 (ii) Find the coordinates of the point P on AD such that AP : PD = 2 : 1 Point P divides AD in the ratio 2 : 1 Applying section formula, Coordinates of P are ((๐‘š_1 ๐‘ฅ_2 + ๐‘š_2 ๐‘ฅ_1)/(๐‘š_1 + ๐‘š_2 ), (๐‘š_1 ๐‘ฆ_2+ ๐‘š_2 ๐‘ฆ_1)/(๐‘š_1 + ๐‘š_2 )) Put ๐‘š_1=2 ๐‘š_2=1 ๐‘ฅ_1=4 ๐‘ฅ_2=7/2 ๐‘ฆ_1=2 ๐‘ฆ_2=9/2 Coordinates of Point P = ((2 (7/2) + 1(4))/(2 + 1), (2 (9/2) + 1 (2))/(2 + 1)) = ((7 + 4)/3,(9 + 2)/3) = (๐Ÿ๐Ÿ/๐Ÿ‘,๐Ÿ๐Ÿ/๐Ÿ‘) Question 7 (iii) Find the coordinates of points Q and R on medians BE and CF respectively such that BQ : QE = 2 : 1 and CR : RF = 2 : 1. To find points Q and R, we need to first find points E and F Point F Since CF is the median, point F is the mid-point of AB Coordinates of F = Mid Point of AB Point E Since BE is the median, point E is the mid-point of AB Coordinates of E = Mid Point of AC = ((๐‘ฅ_1 + ๐‘ฅ_2)/2, (๐‘ฆ_1 + ๐‘ฆ_2)/2) Here, ๐‘ฅ_1=4 ๐‘ฅ_2=6 ๐‘ฆ_1=2 ๐‘ฆ_2=5 Coordinates of F = ((4 + 6)/2,(2 + 5)/2) = (10/2,7/2) = (5, 7/2) = ((๐‘ฅ_1 + ๐‘ฅ_2)/2, (๐‘ฆ_1 + ๐‘ฆ_2)/2) Here, ๐‘ฅ_1=4 ๐‘ฅ_2=1 ๐‘ฆ_1=2 ๐‘ฆ_2=4 Coordinates of E = ((4 + 1)/2,(2 + 4)/2) = (5/2,6/2) = (5/2, 3) Now finding Points Q & R Point R Applying section formula, Coordinates of R = ((๐‘š_1 ๐‘ฅ_2 + ๐‘š_2 ๐‘ฅ_1)/(๐‘š_1 + ๐‘š_2 ), (๐‘š_1 ๐‘ฆ_2+ ๐‘š_2 ๐‘ฆ_1)/(๐‘š_1 + ๐‘š_2 )) Put ๐‘š_1=2 ๐‘š_2=1 ๐‘ฅ_1=1 ๐‘ฅ_2=5 ๐‘ฆ_1=4 ๐‘ฆ_2=7/2 Point Q Applying section formula, Coordinates of Q = ((๐‘š_1 ๐‘ฅ_2 + ๐‘š_2 ๐‘ฅ_1)/(๐‘š_1 + ๐‘š_2 ), (๐‘š_1 ๐‘ฆ_2+ ๐‘š_2 ๐‘ฆ_1)/(๐‘š_1 + ๐‘š_2 )) Put ๐‘š_1=2 ๐‘š_2=1 ๐‘ฅ_1=6 ๐‘ฅ_2=5/2 ๐‘ฆ_1=5 ๐‘ฆ_2=3 Coordinates of R = ((2(5)+ 1(1))/(2 + 1), (2 (7/2) + 1(4))/(2 + 1)) = ((10 + 1)/3,(7 + 4)/3) = (๐Ÿ๐Ÿ/๐Ÿ‘,๐Ÿ๐Ÿ/๐Ÿ‘) Coordinates of Q = (((2) (5/2)+ (1) (6))/(2 + 1), (2 (3) + 1(5))/(2 + 1)) = ((5 + 6)/3,(6 + 5)/3) = (๐Ÿ๐Ÿ/๐Ÿ‘,๐Ÿ๐Ÿ/๐Ÿ‘) Thus, coordinates of Q and R are (๐Ÿ๐Ÿ/๐Ÿ‘,๐Ÿ๐Ÿ/๐Ÿ‘) Question 7 (iv) What do you observe? [Note : The point which is common to all the three medians is called the centroid and this point divides each median in the ratio 2 : 1.] Coordinates of P, Q, and R are same, thus it is a common point to all the medians. Since Centroid of a triangle divides each median in ratio 2 : 1. So, point (11/2 ", " 11/2) is called centroid of triangle Question 7 (v) If A (๐‘ฅ_1, ๐‘ฆ_1), B (๐‘ฅ_2, ๐‘ฆ_2) and C (๐‘ฅ_3, ๐‘ฆ_3) are the vertices of ฮ” ABC, find the coordinates of the centroid of the triangle. Centroid of a triangle divides each median in ratio 2 : 1 Let us draw median AD Let O be the point which divides AD in the ratio 2 : 1 So, O is the centroid. Finding coordinates of point D Since AD is the median, D is the mid-point of BC Coordinates of D = ((๐‘ฅ_2 +ใ€– ๐‘ฅใ€—_3)/2, (๐‘ฆ_2 + ๐‘ฆ_3)/2) Now, O divides AD in the ratio 2 : 1 Using Section Formula, Coordinates of O are ((๐‘š_1 ๐‘Ž_2 + ๐‘š_2 ๐‘Ž_1)/(๐‘š_1 + ๐‘š_2 ), (๐‘š_1 ๐‘_2 + ๐‘š_2 ๐‘_1)/(๐‘š_1 + ๐‘š_2 )) Where A (๐‘Ž_1, ๐‘_1) and D (๐‘Ž_2, ๐‘_2) Here ๐‘Ž_1=๐‘ฅ_1 ๐‘_1= ๐‘ฆ_1 ๐‘Ž_2=(๐‘ฅ_2 + ๐‘ฅ_3)/2 ๐‘_2=(๐‘ฆ_2 + ๐‘ฆ_3)/2 ๐‘š_1=2 ๐‘š_2=1 Coordinates of O = (((2) ((๐‘ฅ_2 + ๐‘ฅ_3)/2) + (1) (๐‘ฅ_1 ))/(2 + 1),((2) ((๐‘ฆ_2 + ๐‘ฆ_3)/2) + (1) (๐‘ฆ_1 ))/(2 + 1)) =((๐‘ฅ_2 +ใ€– ๐‘ฅใ€—_3 + ๐‘ฅ_1)/3, (๐‘ฆ_2 + ๐‘ฆ_3 + ๐‘ฆ_1)/3) = ((๐’™_๐Ÿ +ใ€– ๐’™ใ€—_๐Ÿ + ๐’™_๐Ÿ‘)/๐Ÿ‘, (๐’š_๐Ÿ + ๐’š_๐Ÿ + ๐’š_๐Ÿ‘)/๐Ÿ‘) Note :- If we would have used section formula in CF or BE, we would have got the same result.

  1. Chapter 7 Class 10 Coordinate Geometry
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo