Check sibling questions


Transcript

Ex 9.2, 10 In each of the Exercises 1 to 10 verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation : ๐‘ฆ=โˆš(๐‘Ž^2โˆ’๐‘ฅ^2 ) ๐‘ฅ โˆˆ (โˆ’๐‘Ž , ๐‘Ž) : ๐‘ฅ+๐‘ฆ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=0(๐‘ฆโ‰ 0) ๐‘ฆ=โˆš(๐‘Ž^2โˆ’๐‘ฅ^2 ) Differentiating Both Sides w.r.t ๐‘ฅ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=(๐‘‘(โˆš(๐‘Ž^2 โˆ’ ๐‘ฅ^2 )))/๐‘‘๐‘ฅ =1/(2โˆš(๐‘Ž^2 โˆ’ ๐‘ฅ^2 ))ร—(โˆ’2๐‘ฅ) =(โˆ’๐‘ฅ)/โˆš((๐‘Ž^2 โˆ’ ๐‘ฅ^2 ) ) (Using Chain Rule) Now, We Have to Verify ๐‘ฅ+๐‘ฆ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ=0 Taking LHS ๐‘ฅ+๐‘ฆ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ =๐‘ฅ+๐‘ฆ[(โˆ’๐‘ฅ)/โˆš(๐‘Ž^2 โˆ’ ๐‘ฅ^2 )] =๐‘ฅ+โˆš(๐‘Ž^2โˆ’๐‘ฅ^2 ) [(โˆ’๐‘ฅ)/โˆš(๐‘Ž^2 โˆ’ ๐‘ฅ^2 )] =๐‘ฅโˆ’๐‘ฅ =0 = R.H.S Hence Verified (โ–ˆ(๐‘ˆ๐‘ ๐‘–๐‘›๐‘” ) ๐‘ฆ=โˆš(๐‘Ž^2โˆ’๐‘ฅ^2 ))

  1. Chapter 9 Class 12 Differential Equations
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo