Check sibling questions


Transcript

Ex 9.2, 6 Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation : 𝑦=π‘₯ sin⁑π‘₯: π‘₯𝑦^β€²=𝑦+π‘₯√(π‘₯^2βˆ’π‘¦^2 ) (π‘₯β‰ 0 π‘Žπ‘›π‘‘ π‘₯>𝑦 π‘œπ‘Ÿ π‘₯<βˆ’π‘¦ ) 𝑦=π‘₯ sin⁑π‘₯ 𝑑𝑦/𝑑π‘₯=(𝑑(π‘₯ sin⁑π‘₯))/𝑑π‘₯ =𝑑(π‘₯)/𝑑π‘₯.sin⁑π‘₯+π‘₯.𝑑(sin⁑π‘₯ )/𝑑π‘₯ =1.sin⁑π‘₯+π‘₯(cos⁑π‘₯ ) =sin⁑π‘₯+π‘₯cos⁑π‘₯ Now, we have to verify π‘₯𝑦^β€²=𝑦+π‘₯√(π‘₯^2βˆ’π‘¦^2 ) L.H.S π‘₯𝑦^β€² =π‘₯[sin π‘₯+π‘₯π‘π‘œπ‘  π‘₯] =π‘₯ 𝑠𝑖𝑛 π‘₯+π‘₯^2 cos π‘₯ R.H.S 𝑦+π‘₯√(π‘₯^2βˆ’π‘¦^2 ) =π‘₯ 𝑠𝑖𝑛 π‘₯+π‘₯√(π‘₯^2βˆ’(π‘₯ 𝑠𝑖𝑛 π‘₯)^2 ) =π‘₯ 𝑠𝑖𝑛 π‘₯+π‘₯√(π‘₯^2 (1βˆ’sin^2⁑π‘₯ ) ) =π‘₯ 𝑠𝑖𝑛 π‘₯+π‘₯^2 √(cos^2⁑π‘₯ ) =π‘₯ 𝑠𝑖𝑛 π‘₯+π‘₯^2 cos⁑π‘₯ Since LHS = R.H.S Hence Verified

  1. Chapter 9 Class 12 Differential Equations
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo