Ex 8.2 , 7 (MCQ) - Chapter 8 Class 12 Application of Integrals
Last updated at Dec. 16, 2024 by Teachoo
Last updated at Dec. 16, 2024 by Teachoo
Ex 8.2 , 7 Area lying between the curves 2 = 4 and =2 is (A) (B) (C) (D) Step 1: Drawing figure Parabola is 2 =4x Also, =2 passes through (0, 0) & (1, 2) Point (1, 2) lies in parabola y2 = 4x Hence, intersecting point A = (1, 2) Area required Area required = Area OBAD Area OAD Area OBAD Area OBAD = 0 1 y Equation of parabola 2 = 4x = 4x = 2 x Therefore, Area OBAD = 0 1 2 x = 2 0 1 1 2 = 2 1 2 +1 1 2 +1 0 1 = 2 3 2 3 2 0 1 = 2 2 3 3 2 0 1 = 4 3 1 3 2 0 3 2 = 4 3 Area OAD Area OAD = 0 1 y Equation of line y = 2x Therefore, Area OAD = 0 1 2 = 2 0 1 = 2 2 2 0 1 = 2 1 2 2 0 1 = 1 2 0 2 = 1 Area required = Area OBAD Area OAD = 4 3 1 = 1 3 So, B is correct option
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo