Last updated at Dec. 16, 2024 by Teachoo
Question 1 Find the area of circle 4π₯^2+4π¦^2=9 which is interior to the parabola x2 = 4π¦ Given Circle and a Parabola Circle 4π₯^2+4π¦^2=9 π₯^2+π¦^2=9/4 π^π+π^π=(π/π)^π Hence, Center = (0, 0) Radius = 3/2 Parabola π₯^2=4π¦ This is a parabola with vertical axis Our figure looks like Required Area = Area ABCO Finding point of intersection A and C Solving (1) and (2) 4π₯^2+4π¦^2=9 β¦(1) π₯^2=4π¦ β¦(2) Putting value of π₯^2 from (2) in (1) 4π₯^2+4π¦^2=9 4(4π¦)+4π¦^2=9 16π¦+4π¦^2β9=0 γππγ^π+πππβπ=π γ4π¦γ^2+18π¦β2π¦β9=0 2y(2y+9)β1(2π¦+9)=0 (ππ βπ)(ππ+π)=π Hence, π=π/π & π=(βπ)/π Putting values of y in (2) For π=π/π π₯^2=4π¦ π₯^2=4 Γ 1/2 π₯^2=2 π=Β±βπ Hence, π₯ "= " β2 & π₯" ="ββ2 For π=(βπ)/π π₯^2=4π¦ π₯^2=4 Γ((β9)/( 2)) π₯^2=β2 Γ9 π₯^2=β18 As square cannot be negative, x has no real value Hence the points are A=(ββπ , π/π) & C=(βπ , π/π) Finding Area Area required = Area ABCO Since ABCO is symmetric in y β axis, Area ABCO = 2 Γ Area BOC Area BOC = Area BCDO β Area OCD Area BCDO Area BCDO = β«_0^(β2)βγπ¦ ππ₯γ y β Equation of circle 4x2 + 4y2 = 9 4y2 = 9 β 4x2 y2 = 9/4 β x2 y = Β±β(9/4 " β x2" ) Since BCDO is above x β axis, we take positive value of y β΄ y = β(π/π " β x2" ) Area BCDO = β«_π^(βπ)ββ(π/π " β x2" ) dx = β«_0^(β2)ββ((3/2)^2 " β " "x" ^2 ) dx = [π/π β((π/π)^π " β " "x" ^π )+(π/π)^π/π γπππγ^(βπ)β‘γπ/((π/π) )γ ]_π^βπ = [π₯/2 β((3/2)^2 " β " "x" ^2 )+9/8 sin^(β1)β‘γ2π₯/3γ ]_0^β2 = [β2/2 β(9/4 " β " γ"(" β2 ")" γ^2 ) + 9/8 sin^(β1)β‘((2β2)/3) ] β [0/2 β(9/4 " β " "0" ^2 )+9/8 sin^(β1)β‘((2Γ0)/3) ] We know that β«1βγβ(π^2βπ₯^2 ) ππ₯γ =π₯/2 β(π^2βπ₯^2 )+π^2/2 γπ ππγ^(β1)β‘γπ₯/π+πγ Putting a = 3/2 = β2/2 β(9/4 " β " 2)+9/8 sin^(β1)β‘γ((2β2)/3)β9/8 sin^(β1)β‘γ(0)γ γ = β2/2Γβ(1/4)+9/8 sin^(β1)β‘γ((2β2)/3)β9/8Γ0γ = βπ/π+ π/π sinβ1((πβπ)/π) Area OCD Area OCD = β«_0^(β2)βπ¦ dx y β Equation of parabola x2 = 4y y = π^π/π So, Area OCD = β«_0^(β2)βπ¦ dx = β«_π^(βπ)βπ^π/π dx = 1/4 β«_0^(β2)βπ₯^2 dx = π/π [π^π/π]_π^βπ = 1/4 [(β2)^3/3β0^3/3] = 1/4 [(β2Γβ2Γβ2)/3β0] = π/π [(πβπ)/π] = βπ/π Now, Area BOC = Area BCDO β Area OCD = βπ/π + π/π γπππγ^(βπ)β‘((πβπ)/π) β βπ/π = β2/4 β β2/6+9/8 sin^(β1)β‘((2β2)/3) = βπ/ππ +π/π γπππγ^(βπ)β‘((πβπ)/π) Required Area = Area ABCO = 2 Γ Area BOC = 2 Γ [βπ/ππ+π/π γπππγ^(βπ)β‘((πβπ)/π) ] = βπ/π+π/π γπππγ^(βπ)β‘((πβπ)/π)
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo