Last updated at Dec. 16, 2024 by Teachoo
Misc 5 Prove that: sin π₯ + sin 3π₯ + sin5π₯ + sin 7π₯ = 4cos π₯ cos 2π₯ sin 4π₯ Solving LHS sin π₯ + sin 3π₯ + sin5π₯ + sin 7π₯ = (π¬π’π§β‘π+πππ ππ)+(π¬π’π§β‘ππ+πππβ‘ππ) = 2 sin ((π₯ + 5π₯)/2) .cos ((π₯ β 5π₯)/2) + 2sin ((3π₯ + 7π₯)/2) cos ((3π₯ β 7π₯)/2) = 2 sin 3π₯ cos (β2π₯) + 2sin 5π₯ cos (β2π₯) = 2 sin 3π₯ cos 2π₯ + 2sin 5π₯ cos 2π₯ = 2 cos 2π₯ [ sin 3π₯ + sin 5π₯] = 2cos 2π₯ ("2sin " ((3π₯ + 5π₯)/2)" . cos" ((3π₯ β 5π₯)/2)) = 2cosβ‘2π₯ [2 sinβ‘4π₯.cosβ‘γ(βπ₯)γ] = π ππ¨π¬β‘ππ π¬π’π§β‘ππ ππ¨π¬β‘π = RH.S. = 2 cos 2π₯ [ sin 3π₯ + sin 5π₯] = 2cos 2π₯ ("2sin " ((3π₯ + 5π₯)/2)" . cos" ((3π₯ β 5π₯)/2)) = 2cosβ‘2π₯ [2 sinβ‘4π₯.ππ¨π¬β‘γ(βπ)γ] = π ππ¨π¬β‘ππ π¬π’π§β‘ππ ππ¨π¬β‘π = RH.S. Hence , L.H.S.= R.H.S. Hence proved
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo