Last updated at Dec. 16, 2024 by Teachoo
Misc 3 Prove that: (cos π₯ + cos y)2 + (sin π₯ β sin y)2 = 4cos2 (π₯ + y)/2 Solving LHS (ππ¨π¬β‘π+ππ¨π¬β‘π )^π + (π¬π’π§β‘πβπ¬π’π§β‘π )^π = cos2 π₯+cos2 π¦+2 cosβ‘π₯ cosβ‘π¦+sin2 π₯+ sin2 π¦ β 2sinβ‘π₯ sinβ‘π¦ = (ππππ π+ππππ π)+(ππππ π+ππππ π )+2 (cosβ‘π₯ cosβ‘π¦ βsinβ‘π₯ sinβ‘π¦) = 1 + 1 +2 (ππ¨π¬β‘π ππ¨π¬β‘πβπ¬π’π§β‘π π¬π’π§β‘π ) = 2 + 2 πππβ‘(π + π) = 2 [1 + πππβ‘(π + π) ] = 2 [1+2cos2 ((π₯ + y)/2) β 1 ] = 4 cos^2 ((π₯ + y)/2) = RH.S. Hence proved
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo