Last updated at Dec. 16, 2024 by Teachoo
Misc 2 Prove that: (sin 3๐ฅ + sin ๐ฅ) sin ๐ฅ + (cos 3๐ฅ โ cos ๐ฅ) cos ๐ฅ = 0 Lets calculate (sin 3x + sin x) and (cos 3x โ cos x) separately We know that sin x + sin y = sin ((๐ฅ + ๐ฆ)/2) cos ((๐ฅ โ ๐ฆ)/2) Replacing x with 3x and y with x sin 3x + sin x = 2sin ((3๐ฅ + ๐ฅ)/2) cos ((3๐ฅ โ ๐ฅ)/2) sin 3x + sin x = 2 sin 2x cos x Similarly , We know that cos x โ cos y = โ2 sin ((๐ฅ + ๐ฆ)/2) sin ((๐ฅ โ ๐ฆ)/2) Replacing x with 3x and y with x cos 3x โ cos x = โ2 sin ((3๐ฅ + ๐ฅ)/2) sin ((3๐ฅ โ ๐ฅ)/2) cos 3x โ cos x = โ2 sin 2x sin x Now solving L.H.S (sin 3x + sin x) sin x + (cos 3x โ cos x) cos x Putting values from (1) & (2) = (2 sin 2x cos x) (sin x) + (โ2sin 2x) (sin x) (cos x) = 2 sin 2x cos x sin x โ 2 sin 2x sin x cos x = 0 = R.H.S Hence L.H.S = R.H.S Hence proved
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo