Check sibling questions


Transcript

Misc 1 Prove that: 2cos ๐œ‹/13 cos 9๐œ‹/13 + cos 3๐œ‹/13 + cos 5๐œ‹/13 = 0 Solving L.H.S 2cos ๐œ‹/13 cos 9๐œ‹/13 + cos 3๐œ‹/13 + cos 5๐œ‹/13 = ("cos " ๐Ÿ๐ŸŽ๐…/๐Ÿ๐Ÿ‘ " + cos " ๐Ÿ–๐…/๐Ÿ๐Ÿ‘) + cos 3๐œ‹/13 + cos 5๐œ‹/13 We know that 2 cos x cos y = cos (x + y) + cos (x โ€“ y) Putting x = 9๐œ‹/13 and y = ๐œ‹/13 2cos ๐Ÿ—๐…/๐Ÿ๐Ÿ‘ cos ๐…/๐Ÿ๐Ÿ‘ = cos (9๐œ‹/13 " + " ๐œ‹/13) + cos(9๐œ‹/13 " + " ๐œ‹/13) = cos (๐Ÿ๐ŸŽ๐…/๐Ÿ๐Ÿ‘) + cos ((๐Ÿ– ๐…)/๐Ÿ๐Ÿ‘) = ("cos " 10๐œ‹/13 " + cos " 3๐œ‹/13) + ("cos " 8๐œ‹/13 " + cos " 5๐œ‹/13) = ("2 cos " ((10๐œ‹/13 + 3๐œ‹/13)/2)" . cos " ((10๐œ‹/13 โˆ’ 3๐œ‹/13)/2)) + ("2cos " ((8๐œ‹/13 + 5๐œ‹/13)/2)" . cos " ((8๐œ‹/13 โˆ’ 5๐œ‹/13)/2)) = ("2 cos " ((๐Ÿ๐Ÿ‘๐…/๐Ÿ๐Ÿ‘)/๐Ÿ)" . cos " ((๐Ÿ•๐…/๐Ÿ๐Ÿ‘)/๐Ÿ)) + ("2 cos " (๐Ÿ๐Ÿ‘๐…/๐Ÿ๐Ÿ‘)/๐Ÿ " . cos " (๐Ÿ‘๐…/๐Ÿ๐Ÿ‘)/๐Ÿ) = ("2 cos " ๐œ‹/2 " . cos " 7๐œ‹/26) + ("2 cos " ๐œ‹/2 " . cos " 3๐œ‹/26) = 2 cos ๐…/๐Ÿ ("cos " 7๐œ‹/26 " + cos " 3๐œ‹/26) = 2 ร— 0 ("cos " 7๐œ‹/26 " + cos " 3๐œ‹/26) = 0 = R.H.S. Hence L.H.S. = R.H.S. Hence proved

  1. Chapter 3 Class 11 Trigonometric Functions
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo