Last updated at Dec. 13, 2024 by Teachoo
Ex 6.2, 10 The diagonals of a quadrilateral ABCD intersect each other at the point O such that π΄π/π΅π = πΆπ/π·π . Show that ABCD is a trapezium Given: ABCD is a quadrilateral where diagonals AC & BD intersect at O & π΄π/π΅π=πΆπ/π·π To prove: ABCD is a trapezium Construction: Let us draw a line EF II AB passing through point O. Proof: Given π΄π/π΅π=πΆπ/π·π β π΄π/πΆπ=π΅π/π·π Now, in β π΄π·π΅ EO II AB π΄πΈ/π·πΈ=π΅π/π·π β π΄πΈ/π·πΈ=π΄π/πΆπ Thus in Ξ ADC, Line EO divides the triangle in the same ratio β΄ EO II DC Now, EO II DC But, we know that EO II AB β EO II AB II DC β AB II DC Hence, one pair of opposite sides of quadrilateral ABCD are parallel Therefore ABCD is a trapezium . Hence proved
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo