Evaluate ∫_(-1)^2|x^3-3x^2+2x| dx
This question is similar to Question 30 - CBSE Class 12 Sample Paper 2020 Boards
Last updated at Dec. 14, 2024 by Teachoo
This question is similar to Question 30 - CBSE Class 12 Sample Paper 2020 Boards
Question 11 Evaluate ∫_(−1)^2▒|𝑥^3−3𝑥^2+2𝑥| dx |𝒙^𝟑−𝟑𝒙^𝟐+𝟐𝒙|=|𝑥(𝑥^2−3𝑥+2)| =|𝑥(𝑥^2−2𝑥−𝑥+2)| =|𝑥(𝑥(𝑥−2)−1(𝑥−2)) | =|𝒙(𝒙−𝟏)(𝒙−𝟐)| Thus, 𝑥=0,𝑥=1,𝑥=2 ∴ |𝒙^𝟑−𝟑𝒙^𝟐+𝟐𝒙|={█(−𝑥 . −(𝑥−1) . −(𝑥−2) 𝑖𝑓 −1≤𝑥<0@𝑥 . −(𝑥−1) . −(𝑥−2) 𝑖𝑓 0≤𝑥<1@𝑥 . (𝑥−1) . −(𝑥−2) 𝑖𝑓 1≤𝑥<2)┤ ={█(−𝑥(𝑥−1) (𝑥−2) 𝑖𝑓 −1≤𝑥<0@𝑥(𝑥−1)(𝑥−2) 𝑖𝑓 0≤𝑥<1@−𝑥(𝑥−1)(𝑥−2) 𝑖𝑓 1≤𝑥<2)┤ ={█(−(𝒙^𝟑−𝟑𝒙^𝟐+𝟐𝒙) 𝑖𝑓 −1≤𝑥<0@(𝒙^𝟑−𝟑𝒙^𝟐+𝟐𝒙) 𝑖𝑓 0≤𝑥<1@−(𝒙^𝟑−𝟑𝒙^𝟐+𝟐𝒙) 𝑖𝑓 1≤𝑥<2)┤ Now, ∫_(−𝟏)^𝟐▒|𝒙^𝟑−𝟑𝒙^𝟐+𝟐𝒙| dx = ∫_(−1)^0▒〖−(𝑥^3−3𝑥^2+2𝑥)〗 𝑑𝑥+∫_0^1▒〖(𝑥^3−3𝑥^2+2𝑥)〗 𝑑𝑥 +∫_1^2▒〖−(𝑥^3−3𝑥^2+2𝑥)〗 𝑑𝑥 = −[𝑥^4/4−3 ×𝑥^3/3+2 ×𝑥^2/2]_(−1)^0+[𝑥^4/4−3 ×𝑥^3/3+2 ×𝑥^2/2]_0^1 ` −[𝑥^4/4−3 ×𝑥^3/3+2 ×𝑥^2/2]_1^2 = −[𝒙^𝟒/𝟒−𝒙^𝟑+𝒙^𝟐 ]_(−𝟏)^𝟎+[𝒙^𝟒/𝟒−𝒙^𝟑+𝒙^𝟐 ]_𝟎^𝟏−[𝒙^𝟒/𝟒−𝒙^𝟑+𝒙^𝟐 ]_𝟏^𝟐 = −[((0^4 )/4−0^3+0^2 )−((−1)^4/4−(−1)^3+(−1)^2 )] +[(1^4/4−1^3+1^2 )−((0^4 )/4−0^3+0^2 )] −[(2^4/4−2^3+2^2 )−(1^4/4−1^3+1^2 )]= −[0−(1/4+1+1)] +[(1/4−1+1)−0] −[(4−8+4)−(1/4−1+1)] = −[−9/4]+[1/4]−[0−1/4] = 9/4+1/4+1/4 = 𝟏𝟏/𝟒
CBSE Class 12 Sample Paper for 2022 Boards (For Term 2)
Question 1 (Choice 2)
Question 2 Important
Question 3
Question 4 Important
Question 5
Question 6 Important
Question 7 Important
Question 8 (Choice 1)
Question 8 (Choice 2)
Question 9 Important
Question 10 (Choice 1)
Question 10 (Choice 2)
Question 11 Important You are here
Question 12 (Choice 1)
Question 12 (Choice 2) Important
Question 13 Important
Question 14 - Case Based Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo