Check sibling questions

Find the shortest distance between the following lines

r โƒ— = (i ฬ‚+j ฬ‚-k ฬ‚ )+s(2i ฬ‚+j ฬ‚+k ฬ‚ )

r โƒ— = (i ฬ‚+j ฬ‚+k ฬ‚ )+t(4i ฬ‚+(2j) ฬ‚+2k ฬ‚ )

This question is similar to Example 12 - Chapter 11 Class 12 - Three Dimensional Geometry


Transcript

Question 10 (Choice 1) Find the shortest distance between the following lines: ๐‘Ÿ โƒ— = (๐‘– ฬ‚+๐‘— ฬ‚โˆ’๐‘˜ ฬ‚ )+๐‘ (2๐‘– ฬ‚+๐‘— ฬ‚+๐‘˜ ฬ‚ ) ๐‘Ÿ โƒ— = (๐‘– ฬ‚+๐‘— ฬ‚+2๐‘˜ ฬ‚ )+๐‘ก(4๐‘– ฬ‚+2๐‘— ฬ‚+2๐‘˜ ฬ‚ ) Given lines ๐‘Ÿ โƒ— = (๐‘– ฬ‚+๐‘— ฬ‚โˆ’๐‘˜ ฬ‚ )+๐‘ (2๐‘– ฬ‚+๐‘— ฬ‚+๐‘˜ ฬ‚ ) ๐‘Ÿ โƒ— = (๐‘– ฬ‚+๐‘— ฬ‚+2๐‘˜ ฬ‚ )+๐‘ก(4๐‘– ฬ‚+2๐‘— ฬ‚+2๐‘˜ ฬ‚ ) We can write them as ๐‘Ÿ โƒ— = (๐‘– ฬ‚+๐‘— ฬ‚โˆ’๐‘˜ ฬ‚ )+๐‘ (๐Ÿ๐’Š ฬ‚+๐’‹ ฬ‚+๐’Œ ฬ‚ ) ๐‘Ÿ โƒ— = (๐‘– ฬ‚+๐‘— ฬ‚+2๐‘˜ ฬ‚ )+2๐‘ก(๐Ÿ๐’Š ฬ‚+๐’‹ ฬ‚+๐’Œ ฬ‚ ) Since parallel vector is same, the lines are parallel Distance between two parallel lines with vector equations ๐‘Ÿ โƒ— = (๐‘Ž_1 ) โƒ— + ๐œ†๐’ƒ โƒ— and ๐‘Ÿ โƒ— = (๐‘Ž_2 ) โƒ— + ๐œ‡๐’ƒ โƒ— is |(๐’ƒ โƒ— ร— ((๐’‚_๐Ÿ ) โƒ— โˆ’ (๐’‚_๐Ÿ ) โƒ—))/|๐’ƒ โƒ— | | Finding (๐’‚_๐Ÿ ) โƒ— , (๐’‚_๐Ÿ ) โƒ— and ๐’ƒ โƒ— ๐‘Ÿ โƒ— = (๐‘– ฬ‚ + ๐‘— ฬ‚ โˆ’ ๐‘˜ ฬ‚) + s (2๐’Š ฬ‚ + ๐’‹ ฬ‚ + ๐’Œ ฬ‚) Comparing with ๐‘Ÿ โƒ— = (๐‘Ž1) โƒ— + ๐œ† ๐‘ โƒ—, (๐‘Ž1) โƒ— = ๐‘– ฬ‚ + ๐‘— ฬ‚ โ€“ ๐‘˜ ฬ‚ & ๐‘ โƒ— = 2๐‘– ฬ‚ + ๐‘— ฬ‚ + ๐‘˜ ฬ‚ ๐‘Ÿ โƒ— = (๐‘– ฬ‚ + ๐‘— ฬ‚ + 2๐‘˜ ฬ‚) + ๐œ‡ (2๐’Š ฬ‚ + ๐’‹ ฬ‚ + ๐’Œ ฬ‚) Comparing with ๐‘Ÿ โƒ— = (๐‘Ž2) โƒ— + ๐œ‡๐‘ โƒ—, (๐‘Ž2) โƒ— = ๐‘– ฬ‚ + ๐‘— ฬ‚ + 2๐‘˜ ฬ‚ & ๐‘ โƒ— = 2๐‘– ฬ‚ + ๐‘— ฬ‚ + ๐‘˜ ฬ‚ Now, ((๐’‚๐Ÿ) โƒ— โˆ’ (๐’‚๐Ÿ) โƒ—) = (๐‘– ฬ‚ + ๐‘— ฬ‚ + 2๐‘˜ ฬ‚) โˆ’ (๐‘– ฬ‚ + ๐‘— ฬ‚ โˆ’ ๐‘˜ ฬ‚) = ๐‘– ฬ‚ โˆ’ ๐‘– ฬ‚ + ๐‘— ฬ‚ โˆ’ ๐‘— ฬ‚ + 2๐‘˜ ฬ‚ + ๐‘˜ ฬ‚ = 3๐’Œ ฬ‚ Magnitude of ๐‘ โƒ— = โˆš(22 +12 +12) |๐’ƒ โƒ— | = โˆš(4+1+1) = โˆš๐Ÿ” Also, ๐’ƒ โƒ— ร— ((๐’‚๐Ÿ) โƒ— โˆ’ (๐’‚๐Ÿ) โƒ—) = |โ– 8(๐‘– ฬ‚&๐‘— ฬ‚&๐‘˜ ฬ‚@2&1&1@0&0&3)| = ๐‘– ฬ‚ [(3ร—1)โˆ’(0ร—1)] โˆ’ ๐‘— ฬ‚ [(2ร—3)โˆ’(0ร—1)] + ๐‘˜ ฬ‚ [(2ร—0)โˆ’(0ร—1)] = ๐‘– ฬ‚ [3โˆ’0] โˆ’ ๐‘— ฬ‚ [6โˆ’0] + ๐‘˜ ฬ‚ [0โˆ’0] = ๐Ÿ‘๐’Š ฬ‚ โˆ’ 6๐’‹ ฬ‚Now, |๐’ƒ โƒ—" ร— (" (๐’‚๐Ÿ) โƒ—" โˆ’ " (๐’‚๐Ÿ) โƒ—")" | = โˆš(3^2+6^2 ) = โˆš(9+36) = โˆš45 = โˆš(9 ร— 5) = ๐Ÿ‘โˆš๐Ÿ“ So, Distance = |(๐‘ โƒ— ร— ((๐‘Ž_2 ) โƒ— โˆ’ (๐‘Ž_1 ) โƒ—))/|๐‘ โƒ— | | = |(3โˆš5)/โˆš6| = (๐Ÿ‘โˆš๐Ÿ“)/โˆš๐Ÿ” Therefore, the distance between the given two parallel lines is (3โˆš5)/โˆš6.

  1. Class 12
  2. Solutions of Sample Papers and Past Year Papers - for Class 12 Boards

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo