Check sibling questions

Find the particular solution of the following differential equation, given that y = 0 when π‘₯ = πœ‹/4 𝑑𝑦/𝑑π‘₯+π‘¦π‘π‘œπ‘‘π‘₯ 2/(1 + sin⁡π‘₯ )

This question is similar to Example 22 - Chapter 9 Class 12 - Differential Equations 


Transcript

Question 8 (Choice 2) Find the particular solution of the following differential equation, given that y = 0 when π‘₯ = πœ‹/4 𝑑𝑦/𝑑π‘₯+π‘¦π‘π‘œπ‘‘π‘₯= 2/(1 + sin⁑π‘₯ ) 𝑑𝑦/𝑑π‘₯+π‘¦π‘π‘œπ‘‘π‘₯= 2/(1 + sin⁑π‘₯ ) Differential equation is of the form 𝑑𝑦/𝑑π‘₯+𝑃𝑦=𝑄 where P = cot x & Q = 𝟐/(𝟏 + π’”π’Šπ’β‘π’™ ) Now, IF = 𝑒^∫1▒〖𝑃 𝑑π‘₯γ€— IF = 𝑒^∫1β–’γ€–cot⁑π‘₯ 𝑑π‘₯γ€— IF = 〖𝑒^π₯𝐨𝐠⁑𝐬𝐒𝐧⁑𝒙 γ€—^" " IF = sin x Solution is y (IF) =∫1β–’γ€–(𝑄×𝐼𝐹) 𝑑π‘₯+𝑐〗 y sin x = ∫1β–’γ€–πŸ/(𝟏 + π’”π’Šπ’β‘π’™ )Γ— π’”π’Šπ’ 𝒙 𝒅𝒙〗 + C y sin x = 2∫1β–’γ€–(𝑠𝑖𝑛 π‘₯)/(1 + 𝑠𝑖𝑛⁑π‘₯ ) 𝑑π‘₯γ€— + C y sin x = 2∫1β–’γ€–((1 + 𝑠𝑖𝑛 π‘₯ βˆ’ 1))/(1 + 𝑠𝑖𝑛⁑π‘₯ ) 𝑑π‘₯γ€— + C y sin x = 2∫1β–’γ€–((1 + 𝑠𝑖𝑛 π‘₯))/(1 + 𝑠𝑖𝑛⁑π‘₯ ) 𝑑π‘₯γ€—βˆ’2∫1β–’γ€–1/(1 + 𝑠𝑖𝑛⁑π‘₯ ) 𝑑π‘₯γ€— + C y sin x = 𝟐∫1β–’π’…π’™βˆ’πŸβˆ«1β–’γ€–πŸ/(𝟏 + π’”π’Šπ’β‘π’™ ) 𝒅𝒙〗 + C y sin x = 2π‘₯βˆ’2∫1β–’γ€–πŸ/(𝟏 + π’”π’Šπ’β‘π’™ ) 𝒅𝒙〗 + C y sin x = 2π‘₯βˆ’2∫1β–’γ€–1/(1 + 𝑠𝑖𝑛⁑π‘₯ ) Γ—(𝟏 βˆ’ 𝐬𝐒𝐧⁑𝒙)/(𝟏 βˆ’ π’”π’Šπ’β‘π’™ ) 𝑑π‘₯γ€— + C y sin x = 2π‘₯βˆ’2∫1β–’γ€–(1 βˆ’ sin⁑π‘₯)/(1 βˆ’ sin^2⁑π‘₯ ) 𝑑π‘₯γ€— + C y sin x = 2π‘₯βˆ’2∫1β–’γ€–(𝟏 βˆ’ π’”π’Šπ’β‘π’™)/γ€–πœπ¨π¬γ€—^πŸβ‘π’™ 𝒅𝒙〗 + C y sin x = 2π‘₯βˆ’2[∫1β–’γ€–1/γ€–π‘π‘œπ‘ γ€—^2⁑π‘₯ 𝑑π‘₯γ€—βˆ’βˆ«1β–’γ€–sin⁑π‘₯/γ€–π‘π‘œπ‘ γ€—^2⁑π‘₯ 𝑑π‘₯γ€—] + C y sin x = 2π‘₯βˆ’2[∫1β–’γ€–sec^2⁑π‘₯ 𝑑π‘₯γ€—βˆ’βˆ«1β–’γ€–sin⁑π‘₯/(π‘π‘œπ‘  π‘₯) Γ—1/cos⁑π‘₯ 𝑑π‘₯γ€—] + C y sin x = 2π‘₯βˆ’2[∫1▒〖〖𝒔𝒆𝒄〗^πŸβ‘π’™ π’…π’™γ€—βˆ’βˆ«1β–’γ€–π­πšπ§β‘π’™ π¬πžπœβ‘π’™ 𝒅𝒙〗] + C y sin x = πŸπ’™βˆ’πŸ π­πšπ§β‘π’™+𝟐 𝒔𝒆𝒄 𝒙 + C We need to find particular solution when y = 0 when π‘₯ = πœ‹/4 Putting y = 0 and 𝒙 = 𝝅/πŸ’ 0 Γ— sin 𝝅/πŸ’ = 2(𝝅/πŸ’)βˆ’2 tan⁑〖𝝅/πŸ’γ€—+2 𝑠𝑒𝑐 𝝅/πŸ’ + C 0 = πœ‹/2βˆ’2 Γ— 1+2√2 + C 2βˆ’2√2βˆ’πœ‹/2 = C C = 𝟐(πŸβˆ’βˆšπŸ)βˆ’π…/𝟐 Thus, our particular solution is y sin x = πŸπ’™βˆ’πŸ π­πšπ§β‘π’™+𝟐 𝒔𝒆𝒄 𝒙 + 𝟐(πŸβˆ’βˆšπŸ)βˆ’π…/𝟐

  1. Class 12
  2. Solutions of Sample Papers and Past Year Papers - for Class 12 Boards

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo