Check sibling questions

Find f log x (1 + log x) 2 dx

This question is similar to Ex 7.2, 35 - Chapter 7 Class 12 - Integrals


Transcript

Question 1 – Choice 1 Find ∫1β–’γ€–log⁑π‘₯/(1 + log⁑π‘₯ )^2 𝑑π‘₯γ€—Let 𝐈=∫1β–’γ€–log⁑π‘₯/(1 + log⁑π‘₯ )^2 𝑑π‘₯γ€— =∫1β–’γ€–(π’π’π’ˆβ‘π’™ + 𝟏 βˆ’ 𝟏)/(1 + log⁑π‘₯ )^2 𝑑π‘₯γ€— =∫1β–’γ€–((1 + log⁑π‘₯) βˆ’ 1)/(1 + log⁑π‘₯ )^2 𝑑π‘₯γ€— =∫1β–’γ€–((1 + log⁑π‘₯) )/(1 + log⁑π‘₯ )^2 𝑑π‘₯γ€—βˆ’βˆ«1β–’γ€–1/(1 + log⁑π‘₯ )^2 𝑑π‘₯γ€— =∫1β–’γ€–(𝟏 )/((𝟏 + π’π’π’ˆβ‘π’™ ) ) π’…π’™γ€—βˆ’βˆ«1β–’γ€–πŸ/(𝟏 + π’π’π’ˆβ‘π’™ )^𝟐 𝒅𝒙〗 Solving ∫1β–’γ€–(𝟏 )/((𝟏 + π₯𝐨𝐠⁑𝐱 ) ) 𝐝𝐱〗 Using Integration by parts ∫1β–’γ€–(𝟏 )/((𝟏 + π’π’π’ˆβ‘π’™ ) ) 𝒅𝒙〗 = ∫1β–’γ€–(1 )/((1 + π‘™π‘œπ‘”β‘π‘₯ ) ) Γ— 1 𝑑π‘₯γ€— = 1/((1 + log⁑π‘₯)) ∫1β–’γ€–1 𝑑π‘₯γ€—βˆ’βˆ«1β–’(𝒅(𝟏/(𝟏 + π’π’π’ˆ 𝒙))/𝒅𝒙 ∫1β–’γ€–πŸ 𝒅𝒙〗) 𝒅𝒙 = 1/((1 + log⁑π‘₯))Γ— π‘₯βˆ’βˆ«1β–’((βˆ’πŸ)/(𝟏 +π’π’π’ˆ 𝒙)^𝟐 Γ—πŸ/𝒙 Γ— 𝒙) 𝒅𝒙 = π‘₯/((1 + log⁑π‘₯))+∫1β–’πŸ/(𝟏 + π’π’π’ˆ 𝒙)^𝟐 𝒅𝒙We know that ∫1▒〖𝑓(π‘₯) 𝑔⁑(π‘₯) γ€— 𝑑π‘₯=𝑓(π‘₯) ∫1▒𝑔(π‘₯) 𝑑π‘₯βˆ’βˆ«1β–’(𝑓^β€² (π‘₯) ∫1▒𝑔(π‘₯) 𝑑π‘₯) 𝑑π‘₯ Putting f(x) = 1/(1 + log x) and g(x) = 1 Thus I=∫1β–’γ€–(1 )/((1 + π‘™π‘œπ‘”β‘π‘₯ ) ) 𝑑π‘₯γ€—βˆ’βˆ«1β–’γ€–1/(1 + π‘™π‘œπ‘”β‘π‘₯ )^2 𝑑π‘₯γ€— = π‘₯/((1 + log⁑π‘₯))+∫1β–’1/(1 + π‘™π‘œπ‘” π‘₯)^2 𝑑π‘₯βˆ’βˆ«1β–’γ€–1/(1 + π‘™π‘œπ‘”β‘π‘₯ )^2 𝑑π‘₯γ€— = 𝒙/((𝟏 + π’π’π’ˆβ‘π’™))+π‘ͺ

  1. Class 12
  2. Solutions of Sample Papers and Past Year Papers - for Class 12 Boards

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo