Last updated at Dec. 13, 2024 by Teachoo
Question 1 Solve the following pairs of equations by reducing them to a pair of linear equations: (vii) 10/(๐ฅ + ๐ฆ) + 2/(๐ฅ โ ๐ฆ) = 4 15/(๐ฅ + ๐ฆ) โ 5/(๐ฅ โ ๐ฆ) = โ2 10/(๐ฅ + ๐ฆ) + 2/(๐ฅ โ ๐ฆ) = 4 15/(๐ฅ + ๐ฆ) โ 5/(๐ฅ โ ๐ฆ) = โ2 So, our equations become 10u + 2v = 4 15u โ 5v = โ2 Now, we solve 10u + 2v = 4 โฆ(3) 15u โ 5v = โ2 โฆ(4) From (3) 10u + 2v = 4 10u = 4 โ 2v u = (4 โ 2๐ฃ)/10 Putting value of u in (4) 15u โ 5v = โ2 15 ((4 โ 2๐ฃ)/10) โ 5v = โ2 3 ((4 โ 2๐ฃ)/2) โ 5v = โ2 Multiplying both sides by 2 2 ร 3 ((4 โ 2๐ฃ)/2) โ 2 ร 5v = 2 ร โ2 3(4 โ 2v) โ 10v = โ4 12 โ 6v โ 10v = โ4 โ6v โ 10v = โ4 โ 12 โ16v = โ16 v = (โ16)/(โ16) v = 1 Putting v = 1 in (3) 10u + 2v = 4 10u + 2(1) = 4 10u + 2 = 4 10u = 4 โ 2 10u = 2 u = 2/10 u = ๐/๐ Hence, u = 1/5 & v = 1 But, we need to find x & y u = ๐/(๐ + ๐) 1/5 = 1/(๐ฅ + ๐ฆ) x + y = 5 v = ๐/(๐ โ ๐) 1 = 1/(๐ฅ โ ๐ฆ) x โ y = 1 So, our equations become x + y = 5 โฆ(5) x โ y = 1 โฆ(6) Adding (5) and (6) (x + y) + (x โ y) = 5 + 1 2x = 6 x = 6/2 x = 3 Putting value of y in (5) x + y = 5 3 + y = 5 y = 5 โ 3 y = 2 Therefore, x = 3, y = 2 is the solution of our equation Question 1 Solve the following pairs of equations by reducing them to a pair of linear equations: (viii) 1/(3๐ฅ + ๐ฆ) + 1/(3๐ฅ โ ๐ฆ) = 3/4 1/(2(3๐ฅ + ๐ฆ)) โ 1/(2(3๐ฅ โ ๐ฆ)) = (โ1)/8 1/(3๐ฅ + ๐ฆ) + 1/(3๐ฅ โ ๐ฆ) = 3/4 1/(2(3๐ฅ + ๐ฆ)) โ 1/(2(3๐ฅ โ ๐ฆ)) = (โ1)/8 So, our equations become u + v = ๐/๐ 4(u + v) = 3 4u + 4v = 3 ๐/๐ u โ ๐/๐ v = (โ๐)/๐ (๐ข โ ๐ฃ )/2 = (โ1)/8 8 ร (๐ข โ ๐ฃ )/2 = โ1 4(u โ v) = โ1 4u โ 4v = โ1 So, our equations are 4u + 4v = 3 โฆ(3) 4u โ 4v = โ1 โฆ(4) Adding (3) and (4) (4u + 4v) + (4u โ 4v) = 3 + (โ1) 8u = 2 u = 2/8 u = ๐/๐ Putting u = 1/4 in (3) 4u + 4v = 3 4 ร 1/4 + 4v = 3 1 + 4v = 3 4v = 3 โ 1 4v = 2 v = 2/4 v = ๐/๐ Hence u = 1/4 , v = 1/2 But we need to find x & y We know u = ๐/(๐๐ + ๐) 1/4 = 1/(3๐ฅ + ๐ฆ) 3x + y = 4 v = ๐/(๐๐ โ ๐) 1/2 = 1/(3๐ฅ โ ๐ฆ) 3x โ y = 2 Hence, we solve 3x + y = 4 โฆ(5) 3x โ y = 2 โฆ(6) Adding (5) and (6) (3x + y) + (3x โ y) = 4 + 2 6x = 6 x = 6/6 x = 1 Putting x = 1 in (5) 3x + y = 4 3(1) + y = 4 3 + y = 4 y = 4 โ 3 y = 1 So, x = 1, y = 1 is the solution of the given equation
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo