Check sibling questions

The value of the expression [(sin 2 ⁡22 ° + sin 2 ⁡68 ° )/(cos 2 ⁡ 22 ° + cos 2 ⁡ 68 ° ) + sin 2 ⁡ 63 ° + cos⁡ 63 ° sin⁡27 ° ] is

(A) 3  (B) 2  (C) 1  (D) 0


Transcript

Question 14 The value of the expression [(sin^2⁡22"°" + sin^2⁡68"°" )/(cos^2⁡〖22"°" 〗+ cos^2⁡68"°" )+sin^2⁡〖63"°" +cos⁡〖63"°" sin⁡27"°" 〗 〗 ] is (A) 3 (B) 2 (C) 1 (D) 0 (sin^2⁡22"°" + sin^2⁡68"°" )/(cos^2⁡〖22"°" 〗+ cos^2⁡68"°" )+sin^2⁡〖63"°" +cos⁡63"°" 𝒔𝒊𝒏⁡𝟐𝟕"°" 〗 Using sin θ = cos (90° − θ) = (sin^2⁡22"°" + sin^2⁡68"°" )/(cos^2⁡〖22"°" 〗+ cos^2⁡68"°" )+sin^2⁡〖63"°" +cos⁡〖63"°" 𝐜𝐨𝐬⁡〖(𝟗𝟎°−𝟐𝟕"°)" 〗 〗 〗 = (sin^2⁡22"°" + sin^2⁡68"°" )/(cos^2⁡〖22"°" 〗+ cos^2⁡68"°" )+sin^2⁡〖63"°" +cos⁡〖63"°" 𝒄𝒐𝒔⁡〖𝟔𝟑°〗 〗 〗 = (sin^2⁡22"°" + sin^2⁡68"°" )/(cos^2⁡〖22"°" 〗+ cos^2⁡68"°" )+〖𝒔𝒊𝒏〗^𝟐⁡〖𝟔𝟑"°" +〖𝒄𝒐𝒔〗^𝟐⁡𝟔𝟑"°" 〗 Using cos2 θ + sin2 θ = 1 (sin^2⁡22"°" + 〖𝒔𝒊𝒏〗^𝟐⁡𝟔𝟖"°" )/(cos^2⁡〖22"°" 〗+ 〖𝒄𝒐𝒔〗^𝟐⁡𝟔𝟖"°" )+1 = (sin^2⁡22"°" + 〖𝒄𝒐𝒔〗^𝟐⁡(𝟗𝟎° − 𝟔𝟖"°" ))/(cos^2⁡〖22"°" 〗+ 〖𝒔𝒊𝒏〗^𝟐⁡(𝟗𝟎° − 𝟔𝟖"°" ) )+1 = (sin^2⁡22"°" + 〖𝒄𝒐𝒔〗^𝟐⁡𝟐𝟐"°" )/(cos^2⁡〖22"°" 〗+ 〖𝒄𝒐𝒔〗^𝟐⁡𝟐𝟐"°" )+1 = 1+1 = 2 So, the correct answer is (B)

  1. Chapter 8 Class 10 Introduction to Trignometry
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo