The value of the expression [(sin 2 ⁡22 ° + sin 2 ⁡68 ° )/(cos 2 ⁡ 22 ° + cos 2 ⁡ 68 ° ) + sin 2 ⁡ 63 ° + cos⁡ 63 ° sin⁡27 ° ] is
(A) 3 (B) 2 (C) 1 (D) 0
Last updated at Dec. 16, 2024 by Teachoo
Question 14 The value of the expression [(sin^222"°" + sin^268"°" )/(cos^2〖22"°" 〗+ cos^268"°" )+sin^2〖63"°" +cos〖63"°" sin27"°" 〗 〗 ] is (A) 3 (B) 2 (C) 1 (D) 0 (sin^222"°" + sin^268"°" )/(cos^2〖22"°" 〗+ cos^268"°" )+sin^2〖63"°" +cos63"°" 𝒔𝒊𝒏𝟐𝟕"°" 〗 Using sin θ = cos (90° − θ) = (sin^222"°" + sin^268"°" )/(cos^2〖22"°" 〗+ cos^268"°" )+sin^2〖63"°" +cos〖63"°" 𝐜𝐨𝐬〖(𝟗𝟎°−𝟐𝟕"°)" 〗 〗 〗 = (sin^222"°" + sin^268"°" )/(cos^2〖22"°" 〗+ cos^268"°" )+sin^2〖63"°" +cos〖63"°" 𝒄𝒐𝒔〖𝟔𝟑°〗 〗 〗 = (sin^222"°" + sin^268"°" )/(cos^2〖22"°" 〗+ cos^268"°" )+〖𝒔𝒊𝒏〗^𝟐〖𝟔𝟑"°" +〖𝒄𝒐𝒔〗^𝟐𝟔𝟑"°" 〗 Using cos2 θ + sin2 θ = 1 (sin^222"°" + 〖𝒔𝒊𝒏〗^𝟐𝟔𝟖"°" )/(cos^2〖22"°" 〗+ 〖𝒄𝒐𝒔〗^𝟐𝟔𝟖"°" )+1 = (sin^222"°" + 〖𝒄𝒐𝒔〗^𝟐(𝟗𝟎° − 𝟔𝟖"°" ))/(cos^2〖22"°" 〗+ 〖𝒔𝒊𝒏〗^𝟐(𝟗𝟎° − 𝟔𝟖"°" ) )+1 = (sin^222"°" + 〖𝒄𝒐𝒔〗^𝟐𝟐𝟐"°" )/(cos^2〖22"°" 〗+ 〖𝒄𝒐𝒔〗^𝟐𝟐𝟐"°" )+1 = 1+1 = 2 So, the correct answer is (B)
NCERT Exemplar - MCQ
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo