Check sibling questions

 

 

 


Transcript

Ex 3.3, 1 (Elimination) Solve the following pair of linear equations by the elimination method and the substitution method : (iii) 3x – 5y – 4 = 0 and 9x = 2y + 7 Given 3x – 5y – 4 = 0 3x – 5y = 4 Also given that 9x = 2y + 7 9x – 2y = 7 Now, we multiply first equation by 3 3(3x – 5y) = 3 × 4 9x – 15y = 12 We use elimination method with equations (3) & (2) 13y = –5 y = (−𝟓)/𝟏𝟑 Putting y = (−5)/13 in equation (2) 9x – 2y = 7 9x −" 2"×((−5)/13)=7 9x + 10/13=7 9x = 7 −10/13 9x = (7 × 13 − 10)/13 9x = (91 − 10)/13 9x = 81/13 x = 81/13×1/9 x = 𝟗/𝟏𝟑 Therefore, x = 9/13 & y = −5/13 are the solutions of the given equations Ex 3.3, 1 (Substitution) Solve the following pair of linear equations by the elimination method and the substitution method : (iii) 3x – 5y – 4 = 0 and 9x = 2y + 7 3x – 5y – 4 = 0 9x = 2y + 7 From (1) 3x – 5y – 4 = 0 3x = 4 + 5y x = (𝟒 + 𝟓𝒚)/𝟑 Putting x in (2) 9x = 2y + 7 9 ((4 + 5𝑦)/3)=2𝑦+7 3 (4 + 5y) = 2y + 7 12 + 15y = 2y + 7 15y – 29 = 7 – 12 13y = −5 y = (−𝟓)/𝟏𝟑 Putting y = (−5)/13 in (1) 3x – 5y – 4 = 0 3x – 5((−5)/13) – 4 = 0 3x + 25/13 – 4 = 0 3x = 4 – 25/13 3x = (4(13) − 25)/13 3x = (52 − 25)/13 3x = 27/13 x = 27/(13 × 3) x = 𝟗/𝟏𝟑 Hence, x = 9/13 & y = (−5)/13 are the solution of the given equations

  1. Chapter 3 Class 10 Pair of Linear Equations in Two Variables
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo