Last updated at Dec. 16, 2024 by Teachoo
Ex 3.4 , 1 (Elimination) Solve the following pair of linear equations by the elimination method and the substitution method : (ii) 3x + 4y = 10 and 2x – 2y = 2 3x + 4y = 10 2x – 2y = 2 We multiply equation (2) by 2 2(2x – 2y) = 2 × 2 4x – 4y = 4 Using elimination with equations (3) & (1) 7x = 14 x = 14/7 x = 2 Putting x = 2 in (2) 2x – 2y = 2 2(2) – 2y = 2 4 – 2y = 2 –2y = 2 – 4 –2y = –2 y = (−2)/(−2) y = 1 Thus, x = 2, y = 1 is the solution of the given equations Ex 3.3, 1 (Substitution) Solve the following pair of linear equations by the elimination method and the substitution method : (ii) 3x + 4y = 10 and 2x – 2y = 2 3x + 4y = 10 2x – 2y = 2 From (1) 3x + 4y = 10 3x = 10 – 4y x = ((𝟏𝟎 − 𝟒𝒚)/𝟑) Putting value of x in (2) 2x – 2y = 2 2((10 − 4𝑦)/3)−2𝑦=2 (2(10 − 4𝑦))/3−2𝑦=2 (2(10 − 4𝑦) − 2𝑦 × 3)/3 =2 2(10 – 4y) – 6y = 2 × 3 20 – 8y – 6y = 6 –8y – 6y = 6 – 20 –14y = –14 y = (−14)/(−14) y = 1 Putting y = 1 in (2) 2x – 2y = 2 2x – 2(1) = 2 2x – 2 = 2 2x = 2 + 2 2x = 4 x = 4/2 x = 2 Therefore, x = 2, y = 1 are the solution of the given equations.
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo