Last updated at Dec. 13, 2024 by Teachoo
Question 2 In figure, the sides AB and AC of ∆ABC are produced to points E and D respectively. If bisectors BO and CO of ∠CBE and ∠BCD respectively meet at point O, then prove that ∠BOC = 90° − 1/2∠ BAC. BO is the bisector of ∠ CBE So, ∠ CBO = ∠ EBO = 1/2 ∠ CBE Similarly, CO is the bisector of ∠ BCD So, ∠ BCO = ∠ DCO = 1/2 ∠ BCD ∠ CBE is the exterior angle of Δ ABC Hence, ∠ CBE = x + z ∠ CBE = x + z 1/2(∠ CBE) = 1/2 (x + z) ∠ CBO = 1/2 (x + z) Similarly, ∠ BCD is the exterior angle of Δ ABC Hence, ∠ BCD = x + y 1/2(∠ BCD) = 1/2 (x + y) ∠ BCO = 1/2 (x + y) In Δ OBC ∠ BOC + ∠ BCO + ∠ CBO = 180° ∠ BOC + 1/2 (x + y) + 1/2 (x + z) = 180° ∠ BOC + 1/2 (x + y) + 1/2 (x + z) = 180° ∠ BOC + 1/2 (x + y + x + z) = 180° In Δ ABC x + y + z = 180° Putting (2) in (1) ∠ BOC + 1/2 (x + y + x + z) = 180° ∠ BOC + 1/2 (x + 180° ) = 180° ∠ BOC + 𝑥/2 + 1/2 × 180° = 180° ∠ BOC + 𝑥/2 + 90° = 180° ∠ BOC = 180° – 90° – 𝑥/2 ∠ BOC = 90° – 𝑥/2 ∠ BOC = 90° – 𝑥/2 ∠ BOC = 90° – 1/2 × ∠ BAC Hence proved
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo