Check sibling questions


Transcript

Question 6 From a lot of 30 bulbs which include 6 defectives, a sample of 4 bulbs is drawn at random with replacement. Find the probability distribution of the number of defective bulbs.Let X : be the number of defective bulbs Picking bulbs is a Bernoulli trial So, X has binomial distribution P(X = x) = nCx 𝒒^(𝒏−𝒙) 𝒑^𝒙 n = number of times we pick a bulb = 4 p = Probability of getting defective bulb = 6/30 = 1/5 q = 1 – p = 1 – 1/5 = 4/5 Hence, P(X = x) = 4Cx (𝟏/𝟓)^𝒙 (𝟒/𝟓)^(𝟒−𝒙) Now, P(X = 0) = 4C0 (1/5)^0 (4/5)^(4−0)= 4C0 (1/5)^0 (4/5)^4 = 256/625 P(X = 1) = 4C1 (1/5)^1 (4/5)^(4−1)= 4C1 (1/5)^1 (4/5)^3 = 4 × 64/625 = 256/625 P(X = 2) = 4C2 (1/5)^2 (4/5)^(4−2)= 4C2 (1/5)^2 (4/5)^2 = 6 × 16/625 = 96/625 P(X = 3) = 4C3 (1/5)^3 (4/5)^(4−3)= 4C3 (1/5)^3 (4/5)^1 = 4 × 4/625 = 16/625 P(X = 4) = 4C4 (1/5)^4 (4/5)^(4−4)= 4C4 (1/5)^4 (4/5)^0= 1/625 So, the probability distribution is

  1. Chapter 13 Class 12 Probability
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo