If 𝑎 ⃗ ≠ 0 ⃗, 𝑎 ⃗. 𝑏 ⃗ = 𝑎 ⃗. 𝑐 ⃗, 𝑎 ⃗ × 𝑏 ⃗ = 𝑎 ⃗ × 𝑐 ⃗ , then show that 𝑏 ⃗ = 𝑐 ⃗.
Last updated at Dec. 14, 2024 by Teachoo
Question 9 If 𝑎 ⃗ ≠ 0 ⃗, 𝑎 ⃗. 𝑏 ⃗ = 𝑎 ⃗. 𝑐 ⃗, 𝑎 ⃗ × 𝑏 ⃗ = 𝑎 ⃗ × 𝑐 ⃗ , then show that 𝑏 ⃗ = 𝑐 ⃗. Given that 𝒂 ⃗. 𝒃 ⃗ = 𝒂 ⃗. 𝒄 ⃗ Now, 𝑎 ⃗. 𝑏 ⃗ = 𝑎 ⃗. 𝑐 ⃗ 𝑎 ⃗. 𝑏 ⃗ − 𝑎 ⃗. 𝑐 ⃗ = 0 𝒂 ⃗. (𝒃 ⃗ − 𝒄 ⃗) = 0 Thus, either (𝒃 ⃗ − 𝒄 ⃗) = 𝟎 ⃗ Or 𝒂 ⃗ is perpendicular to (𝒃 ⃗ − 𝒄 ⃗) 𝒂 ⃗ × 𝒃 ⃗ = 𝒂 ⃗ × 𝒄 ⃗ Now, 𝑎 ⃗ × 𝑏 ⃗ = 𝑎 ⃗ × 𝑐 ⃗ 𝑎 ⃗ × 𝑏 ⃗ − 𝑎 ⃗ × 𝑐 ⃗ = 𝟎 ⃗ 𝒂 ⃗ × (𝒃 ⃗ − 𝒄 ⃗) = 𝟎 ⃗ Thus, either (𝒃 ⃗ − 𝒄 ⃗) = 𝟎 ⃗ Or 𝒂 ⃗ is parallel to (𝒃 ⃗ − 𝒄 ⃗) Since 𝑎 ⃗ cannot both be perpendicular and parallel to (𝑏 ⃗ − 𝑐 ⃗) Therefore, the only other solution is (𝑏 ⃗ − 𝑐 ⃗) = 0 ⃗ 𝒃 ⃗ = 𝒄 ⃗ Hence proved
CBSE Class 12 Sample Paper for 2022 Boards (For Term 2)
Question 1 (Choice 2)
Question 2 Important
Question 3
Question 4 Important
Question 5
Question 6 Important
Question 7 Important
Question 8 (Choice 1)
Question 8 (Choice 2)
Question 9 Important You are here
Question 10 (Choice 1)
Question 10 (Choice 2)
Question 11 Important
Question 12 (Choice 1)
Question 12 (Choice 2) Important
Question 13 Important
Question 14 - Case Based Important
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo