Check sibling questions

Find ∫1▒γ€–(x + 1)/((x^2  + 1)  x) dxγ€—

This question is similar to Ex 13.2, 2 - Chapter 13 Class 12 - Probability


Transcript

Question 7 Find ∫1β–’γ€–(π‘₯ + 1)/((π‘₯^2 + 1) π‘₯) 𝑑π‘₯γ€—Let (π‘₯ + 1)/((π‘₯^2 + 1) π‘₯) = (𝑨𝒙 + 𝑩)/((𝒙^𝟐 + 𝟏) ) + π‘ͺ/𝒙 (π‘₯ + 1)/((π‘₯^2 + 1) π‘₯) = ((𝐴π‘₯ + 𝐡)π‘₯ + 𝐢(1 + π‘₯^2 ))/((π‘₯^2 + 1) π‘₯) By cancelling denominator 𝒙 + 𝟏 = (𝑨𝒙 + 𝑩)𝒙 + π‘ͺ(𝟏 + 𝒙^𝟐 ) Putting 𝒙=𝟎 0 + 1 = (𝐴(0) + 𝐡) Γ— 0 + 𝐢(1 +0^2 ) 1 = 𝐢 π‘ͺ = 𝟏 Putting 𝒙=𝟏 1 + 1 = (𝐴(1) + 𝐡) Γ— 1 + 𝐢(1 +1^2 ) 2 = (𝐴 + 𝐡) +2𝐢 Putting 𝐢 = 1 2 = (𝐴 + 𝐡) +2 Γ— 1 2 = (𝐴 + 𝐡) +2 2βˆ’2 = (𝐴 + 𝐡) 0 = 𝐴 + 𝐡 𝑨=βˆ’ 𝑩 Putting 𝒙=βˆ’πŸ βˆ’1 + 1 = (𝐴(βˆ’1) + 𝐡) Γ— βˆ’1 + 𝐢(1 +γ€–(βˆ’1)γ€—^2 ) 0 = βˆ’(βˆ’π΄ + 𝐡) +𝐢 Γ— (1+1) 0 = βˆ’(βˆ’π΄ + 𝐡) +2𝐢 Putting 𝐴=βˆ’ 𝐡 0 = βˆ’(𝐡 + 𝐡) +2𝐢 0 = βˆ’2B +2𝐢 2B =2𝐢 B =𝐢 Putting 𝐢 = 1 𝑩 = 𝟏 And, 𝐴=βˆ’π΅ ∴ 𝑨=βˆ’πŸ Thus, 𝐴=βˆ’1, 𝐡=1, 𝐢 = 1 So, we can write (𝒙 + 𝟏)/((𝒙^𝟐 + 𝟏) 𝒙) = (𝐴π‘₯ + 𝐡)/((π‘₯^2 + 1) ) + 𝐢/π‘₯ = ((βˆ’1)π‘₯ +1)/((π‘₯^2 + 1) ) + 1/π‘₯ = (βˆ’π’™ + 𝟏)/((𝒙^𝟐 + 𝟏) ) + 𝟏/𝒙 Therefore integrating ∫1β–’(π‘₯ + 1)/((π‘₯^2 + 1) π‘₯) 𝑑π‘₯ = ∫1β–’(βˆ’π’™ + 𝟏)/((𝒙^𝟐 + 𝟏) ) 𝑑π‘₯ + ∫1β–’1/(π‘₯ ) 𝑑π‘₯ = ∫1β–’(βˆ’π‘₯ + 1)/((π‘₯^2 + 1) ) 𝑑π‘₯ + ∫1β–’1/(π‘₯ ) 𝑑π‘₯ = ∫1β–’(βˆ’π‘₯)/((π‘₯^2 + 1) ) 𝑑π‘₯ + ∫1β–’1/(π‘₯^2 + 1) 𝑑π‘₯ + ∫1β–’1/(π‘₯ ) 𝑑π‘₯ = ∫1β–’(βˆ’π‘₯)/((π‘₯^2 + 1) ) 𝑑π‘₯ + γ€–π­πšπ§γ€—^(βˆ’πŸ)⁑𝒙 + π’π’π’ˆβ‘γ€–|𝒙|γ€—+𝐢 = ∫1β–’(βˆ’π‘₯)/((π‘₯^2 + 1) ) 𝑑π‘₯ + γ€–π­πšπ§γ€—^(βˆ’πŸ)⁑𝒙 + π’π’π’ˆβ‘γ€–|𝒙|γ€—+𝐢 Solving 𝐈1 I1 = ∫1β–’(βˆ’π‘₯)/(π‘₯^2 + 1) 𝑑π‘₯ Let 𝒕 = 𝒙^𝟐+𝟏 𝑑𝑑/𝑑π‘₯ = 2π‘₯ 𝑑𝑑/2π‘₯ = 𝑑π‘₯ Hence ∫1β–’(βˆ’π‘₯)/(π‘₯^2 + 1) 𝑑π‘₯ = ∫1β–’γ€–(βˆ’π‘₯)/𝑑 . 𝑑𝑑/2π‘₯γ€— = βˆ’βˆ«1▒𝑑𝑑/2(𝑑) = (βˆ’1)/2 γ€–log 〗⁑|𝑑|+𝐢1 Putting back t = π‘₯^2+1 = (βˆ’πŸ)/𝟐 γ€–π’π’π’ˆ 〗⁑|𝒙^𝟐+𝟏|+π‘ͺ𝟐 Therefore integrating ∫1β–’(π‘₯ + 1)/((π‘₯^2 + 1) π‘₯) 𝑑π‘₯ = (βˆ’πŸ)/𝟐 γ€–π’π’π’ˆ 〗⁑|𝒙^𝟐+𝟏| + γ€–π­πšπ§γ€—^(βˆ’πŸ)⁑𝒙 + π’π’π’ˆβ‘γ€–|𝒙|γ€—+𝐢

  1. Class 12
  2. Solutions of Sample Papers and Past Year Papers - for Class 12 Boards

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo