Check sibling questions


Transcript

Ex 8.4, 3 Simplify. (v) (๐‘ฅ+๐‘ฆ)(2๐‘ฅ+๐‘ฆ)+(๐‘ฅ+2๐‘ฆ)(๐‘ฅโˆ’๐‘ฆ)Here, there are 2 expressions 1st expression = (๐‘ฅ+๐‘ฆ)(2๐‘ฅ+๐‘ฆ) 2nd expression = (๐‘ฅ+2๐‘ฆ)(๐‘ฅโˆ’๐‘ฆ) Solving First expression (๐‘ฅ+๐‘ฆ)(2๐‘ฅ+๐‘ฆ) = ๐‘ฅ(2๐‘ฅ+๐‘ฆ)+๐‘ฆ (2๐‘ฅ+๐‘ฆ) = (๐’™ ร— ๐Ÿ๐’™)+(๐’™ ร— ๐’š)+(๐’š ร— ๐Ÿ๐’™)+(๐’š ร— ๐’š) = 2๐‘ฅ^2+๐‘ฅ๐‘ฆ+2๐‘ฆ๐‘ฅ+๐‘ฆ^2 = 2๐‘ฅ^2+๐‘ฅ๐‘ฆ+2๐‘ฅ๐‘ฆ+๐‘ฆ^2 = ๐Ÿ๐’™^๐Ÿ+๐Ÿ‘๐’™๐’š+๐’š^๐Ÿ Solving 2nd expression (๐‘ฅ+2๐‘ฆ)(๐‘ฅโˆ’๐‘ฆ) = ๐‘ฅ(๐‘ฅโˆ’๐‘ฆ)+2๐‘ฆ (๐‘ฅโˆ’๐‘ฆ) = (๐’™ ร— ๐’™)โˆ’(๐’™ ร— ๐’š)+(๐Ÿ๐’š ร— ๐’™)โˆ’(๐Ÿ๐’š ร— ๐’š) = ๐‘ฅ^2โˆ’๐‘ฅ๐‘ฆ+2๐‘ฆ๐‘ฅโˆ’2๐‘ฆ^2 = ๐’™^๐Ÿ+๐’™๐’šโˆ’๐Ÿ๐’š^๐Ÿ Now, our expression becomes: (๐’™+๐’š)(๐Ÿ๐’™+๐’š)+(๐’™+๐Ÿ๐’š)(๐’™โˆ’๐’š) = 2๐‘ฅ^2+3๐‘ฅ๐‘ฆ+๐‘ฆ^2+๐‘ฅ^2+๐‘ฅ๐‘ฆโˆ’2๐‘ฆ^2 = 2๐‘ฅ^2+๐‘ฅ^2+3๐‘ฅ๐‘ฆ+๐‘ฅ๐‘ฆ+๐‘ฆ^2โˆ’2๐‘ฆ^2 = ๐Ÿ‘๐’™^๐Ÿ+๐Ÿ’๐’™๐’šโˆ’๐’š^๐Ÿ

  1. Chapter 8 Class 8 Algebraic Expressions and Identities
  2. Serial order wise

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo