Check sibling questions

Prove that cos⁡ θ - sin⁡θ  + 1 /cos⁡ θ + sin⁡θ  - 1 = cosec θ + cot θ

This is a question of CBSE Sample Paper - Class 10 - 2017/18.

You can download the question paper here  https://www.teachoo.com/cbse/sample-papers/


Transcript

Question 27 Prove that cos⁡〖𝜃 − sin⁡𝜃 + 1〗/cos⁡〖𝜃 + sin⁡𝜃 − 1〗 = cosec 𝜃 + cot 𝜃 Solving RHS cosec 𝜃 + cot 𝜃 Converting into cos and sin = 1/(sin 𝜃)+ cos⁡𝜃/sin⁡𝜃 = (1 + cos⁡𝜃)/sin⁡𝜃 Solving LHS cos⁡〖𝜃 − sin⁡𝜃 + 1〗/cos⁡〖𝜃 + sin⁡𝜃 − 1〗 = cos⁡〖𝜃 − sin⁡𝜃 + 1〗/((cos⁡〖𝜃 + sin⁡𝜃) − 1〗 ) Question 27 Prove that cos⁡〖𝜃 − sin⁡𝜃 + 1〗/cos⁡〖𝜃 + sin⁡𝜃 − 1〗 = cosec 𝜃 + cot 𝜃 Solving RHS cosec 𝜃 + cot 𝜃 Converting into cos and sin = 1/(sin 𝜃)+ cos⁡𝜃/sin⁡𝜃 = (1 + cos⁡𝜃)/sin⁡𝜃 Solving LHS cos⁡〖𝜃 − sin⁡𝜃 + 1〗/cos⁡〖𝜃 + sin⁡𝜃 − 1〗 = cos⁡〖𝜃 − sin⁡𝜃 + 1〗/((cos⁡〖𝜃 + sin⁡𝜃) − 1〗 ) = 〖(cos〗⁡〖𝜃 − sin⁡𝜃) + 1〗/((cos⁡〖𝜃 + sin⁡𝜃) − 1〗 ) × ((cos⁡𝜃+ sin⁡𝜃 ) + 1)/((cos⁡𝜃+ sin⁡𝜃 ) + 1) = (〖(cos〗⁡𝜃 + 1) − sin⁡𝜃)/((cos⁡〖𝜃 + sin⁡𝜃) − 1〗 ) × ((cos⁡𝜃 + 1) + sin⁡𝜃)/((cos⁡𝜃+ sin⁡𝜃 ) + 1) Using (a – b) (a + b) = a2 – b2 in numerator and denominator = (〖〖(cos〗⁡𝜃 + 1)〗^2 − sin^2⁡𝜃)/((cos⁡𝜃+ sin⁡𝜃 )^2 − 1^2 ) = (cos^2⁡𝜃 + 1^2 + 2(1) cos⁡𝜃 − sin^2⁡𝜃)/(cos^2⁡𝜃 + sin^2⁡𝜃 + 2 cos⁡𝜃 sin⁡𝜃 − 1) = (cos^2⁡𝜃 +1 + 2 cos⁡𝜃 − sin^2⁡𝜃)/(cos^2⁡𝜃 + sin^2⁡𝜃 + 2 cos⁡𝜃 sin⁡𝜃 − 1) Using cos^2⁡𝜃 + sin^2⁡𝜃 = 1 in denominator = (cos^2⁡𝜃 +1 + 2 cos⁡𝜃 − sin^2⁡𝜃)/(1 + 2 cos⁡𝜃 sin⁡𝜃 − 1) = (cos^2⁡𝜃 + 1 + 2 cos⁡𝜃 − sin^2⁡𝜃)/(2 cos⁡𝜃 sin⁡𝜃 ) = (cos^2⁡𝜃 + 2 cos⁡𝜃 + (1 − sin^2⁡𝜃 ))/(2 cos⁡𝜃 sin⁡𝜃 ) Using cos^2⁡𝜃=1− sin^2⁡𝜃 in numerator = (cos^2⁡𝜃 + 2 cos⁡𝜃 + cos^2⁡𝜃)/(2 cos⁡𝜃 sin⁡𝜃 ) = (2 cos^2⁡𝜃 + 2 cos⁡𝜃 )/(2 cos⁡𝜃 sin⁡𝜃 ) = (2 cos⁡𝜃 (cos⁡𝜃 + 1) )/(2 cos⁡𝜃 sin⁡𝜃 ) = (cos⁡𝜃 + 1)/sin⁡𝜃 = RHS ∴ LHS = RHS Hence proved

  1. Class 10
  2. Solutions of Sample Papers for Class 10 Boards

About the Author

Davneet Singh

Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo