Last updated at Dec. 16, 2024 by Teachoo
Ex9.1 , 14 The Fibonacci sequence is defined by 1 = a1 = a2 and an = anβ1+anβ2,n > 2 . Find π_(π+1)/an, for n = 1,2,3,4,5, Lets first calculate a1 , a2 , a3 , a4 , a5 & a6 It is given that a1 = 1 a2 = 1 For a3 , a4 , a5 & a6 we need to use an = anβ1 + anβ2 , n > 2 an = an-1 + an-2 , n > 2 Putting n = 3 in (1) a3 = a3 β 1 + a3 β 2 = a2 + a1 = 1 + 1 = 2 Putting n = 4 in (1) a4 = a4 β 1 + a4 β 2 a4 = a3 + a2 = 2 + 1 = 3 an = an-1 + an-2 , n > 2 Putting n = 5 in (1) a5 = a5 β 1 + a5 β 2 a5 = a4 + a3 = 3 + 2 = 5 Putting n = 6 in (1) a6 = a6 β 1 + a6 β 2 a6 = a5 + a4 = 5 + 3 = 8 Now, a1 = 1 , a2 = 1, a3 = 2 , a4 = 3 , a5 = 5 , a6 = 8
About the Author
Davneet Singh has done his B.Tech from Indian Institute of Technology, Kanpur. He has been teaching from the past 14 years. He provides courses for Maths, Science and Computer Science at Teachoo